Metamath Proof Explorer


Theorem ordtypelem3

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
Assertion ordtypelem3 φMTdomFFMvwA|jFMjRw|uwA|jFMjRw¬uRv

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 simpr φMTdomFMTdomF
9 8 elin2d φMTdomFMdomF
10 1 tfr2a MdomFFM=GFM
11 9 10 syl φMTdomFFM=GFM
12 1 tfr1a FunFLimdomF
13 12 simpri LimdomF
14 limord LimdomFOrddomF
15 13 14 ax-mp OrddomF
16 ordelord OrddomFMdomFOrdM
17 15 9 16 sylancr φMTdomFOrdM
18 1 tfr2b OrdMMdomFFMV
19 17 18 syl φMTdomFMdomFFMV
20 9 19 mpbid φMTdomFFMV
21 rneq h=FMranh=ranFM
22 df-ima FM=ranFM
23 21 22 eqtr4di h=FMranh=FM
24 23 raleqdv h=FMjranhjRwjFMjRw
25 24 rabbidv h=FMwA|jranhjRw=wA|jFMjRw
26 2 25 eqtrid h=FMC=wA|jFMjRw
27 26 raleqdv h=FMuC¬uRvuwA|jFMjRw¬uRv
28 26 27 riotaeqbidv h=FMιvC|uC¬uRv=ιvwA|jFMjRw|uwA|jFMjRw¬uRv
29 riotaex ιvwA|jFMjRw|uwA|jFMjRw¬uRvV
30 28 3 29 fvmpt FMVGFM=ιvwA|jFMjRw|uwA|jFMjRw¬uRv
31 20 30 syl φMTdomFGFM=ιvwA|jFMjRw|uwA|jFMjRw¬uRv
32 11 31 eqtrd φMTdomFFM=ιvwA|jFMjRw|uwA|jFMjRw¬uRv
33 6 adantr φMTdomFRWeA
34 7 adantr φMTdomFRSeA
35 ssrab2 wA|jFMjRwA
36 35 a1i φMTdomFwA|jFMjRwA
37 8 elin1d φMTdomFMT
38 imaeq2 x=MFx=FM
39 38 raleqdv x=MzFxzRtzFMzRt
40 39 rexbidv x=MtAzFxzRttAzFMzRt
41 40 4 elrab2 MTMOntAzFMzRt
42 41 simprbi MTtAzFMzRt
43 37 42 syl φMTdomFtAzFMzRt
44 breq1 j=zjRwzRw
45 44 cbvralvw jFMjRwzFMzRw
46 breq2 w=tzRwzRt
47 46 ralbidv w=tzFMzRwzFMzRt
48 45 47 bitrid w=tjFMjRwzFMzRt
49 48 cbvrexvw wAjFMjRwtAzFMzRt
50 43 49 sylibr φMTdomFwAjFMjRw
51 rabn0 wA|jFMjRwwAjFMjRw
52 50 51 sylibr φMTdomFwA|jFMjRw
53 wereu2 RWeARSeAwA|jFMjRwAwA|jFMjRw∃!vwA|jFMjRwuwA|jFMjRw¬uRv
54 33 34 36 52 53 syl22anc φMTdomF∃!vwA|jFMjRwuwA|jFMjRw¬uRv
55 riotacl2 ∃!vwA|jFMjRwuwA|jFMjRw¬uRvιvwA|jFMjRw|uwA|jFMjRw¬uRvvwA|jFMjRw|uwA|jFMjRw¬uRv
56 54 55 syl φMTdomFιvwA|jFMjRw|uwA|jFMjRw¬uRvvwA|jFMjRw|uwA|jFMjRw¬uRv
57 32 56 eqeltrd φMTdomFFMvwA|jFMjRw|uwA|jFMjRw¬uRv