| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orc |
|
| 2 |
1
|
a1d |
|
| 3 |
|
eliun |
|
| 4 |
|
simprl |
|
| 5 |
4
|
adantl |
|
| 6 |
|
simprl |
|
| 7 |
|
simpl |
|
| 8 |
|
otthg |
|
| 9 |
5 6 7 8
|
syl3anc |
|
| 10 |
|
simp1 |
|
| 11 |
9 10
|
biimtrdi |
|
| 12 |
11
|
con3d |
|
| 13 |
12
|
ex |
|
| 14 |
13
|
com13 |
|
| 15 |
14
|
imp31 |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
adantr |
|
| 18 |
|
velsn |
|
| 19 |
|
eqeq1 |
|
| 20 |
19
|
notbid |
|
| 21 |
18 20
|
sylbi |
|
| 22 |
21
|
adantl |
|
| 23 |
22
|
adantr |
|
| 24 |
17 23
|
mpbird |
|
| 25 |
|
velsn |
|
| 26 |
24 25
|
sylnibr |
|
| 27 |
26
|
nrexdv |
|
| 28 |
|
eliun |
|
| 29 |
27 28
|
sylnibr |
|
| 30 |
29
|
rexlimdva2 |
|
| 31 |
3 30
|
biimtrid |
|
| 32 |
31
|
ralrimiv |
|
| 33 |
|
oteq3 |
|
| 34 |
33
|
sneqd |
|
| 35 |
34
|
cbviunv |
|
| 36 |
35
|
eleq2i |
|
| 37 |
36
|
notbii |
|
| 38 |
37
|
ralbii |
|
| 39 |
32 38
|
sylibr |
|
| 40 |
|
disj |
|
| 41 |
39 40
|
sylibr |
|
| 42 |
41
|
olcd |
|
| 43 |
42
|
ex |
|
| 44 |
2 43
|
pm2.61i |
|
| 45 |
44
|
ralrimivva |
|
| 46 |
|
oteq1 |
|
| 47 |
46
|
sneqd |
|
| 48 |
47
|
iuneq2d |
|
| 49 |
48
|
disjor |
|
| 50 |
45 49
|
sylibr |
|