Metamath Proof Explorer


Theorem ovolicc2lem1

Description: Lemma for ovolicc2 . (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ovolicc.1 φA
ovolicc.2 φB
ovolicc.3 φAB
ovolicc2.4 S=seq1+absF
ovolicc2.5 φF:2
ovolicc2.6 φU𝒫ran.FFin
ovolicc2.7 φABU
ovolicc2.8 φG:U
ovolicc2.9 φtU.FGt=t
Assertion ovolicc2lem1 φXUPXP1stFGX<PP<2ndFGX

Proof

Step Hyp Ref Expression
1 ovolicc.1 φA
2 ovolicc.2 φB
3 ovolicc.3 φAB
4 ovolicc2.4 S=seq1+absF
5 ovolicc2.5 φF:2
6 ovolicc2.6 φU𝒫ran.FFin
7 ovolicc2.7 φABU
8 ovolicc2.8 φG:U
9 ovolicc2.9 φtU.FGt=t
10 inss2 22
11 fss F:222F:2
12 5 10 11 sylancl φF:2
13 8 ffvelcdmda φXUGX
14 fvco3 F:2GX.FGX=.FGX
15 12 13 14 syl2an2r φXU.FGX=.FGX
16 9 ralrimiva φtU.FGt=t
17 2fveq3 t=X.FGt=.FGX
18 id t=Xt=X
19 17 18 eqeq12d t=X.FGt=t.FGX=X
20 19 rspccva tU.FGt=tXU.FGX=X
21 16 20 sylan φXU.FGX=X
22 12 adantr φXUF:2
23 22 13 ffvelcdmd φXUFGX2
24 1st2nd2 FGX2FGX=1stFGX2ndFGX
25 23 24 syl φXUFGX=1stFGX2ndFGX
26 25 fveq2d φXU.FGX=.1stFGX2ndFGX
27 df-ov 1stFGX2ndFGX=.1stFGX2ndFGX
28 26 27 eqtr4di φXU.FGX=1stFGX2ndFGX
29 15 21 28 3eqtr3d φXUX=1stFGX2ndFGX
30 29 eleq2d φXUPXP1stFGX2ndFGX
31 xp1st FGX21stFGX
32 23 31 syl φXU1stFGX
33 xp2nd FGX22ndFGX
34 23 33 syl φXU2ndFGX
35 rexr 1stFGX1stFGX*
36 rexr 2ndFGX2ndFGX*
37 elioo2 1stFGX*2ndFGX*P1stFGX2ndFGXP1stFGX<PP<2ndFGX
38 35 36 37 syl2an 1stFGX2ndFGXP1stFGX2ndFGXP1stFGX<PP<2ndFGX
39 32 34 38 syl2anc φXUP1stFGX2ndFGXP1stFGX<PP<2ndFGX
40 30 39 bitrd φXUPXP1stFGX<PP<2ndFGX