Metamath Proof Explorer


Theorem ovollb2

Description: It is often more convenient to do calculations with *closed* coverings rather than open ones; here we show that it makes no difference (compare ovollb ). (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypothesis ovollb2.1 S = seq 1 + abs F
Assertion ovollb2 F : 2 A ran . F vol * A sup ran S * <

Proof

Step Hyp Ref Expression
1 ovollb2.1 S = seq 1 + abs F
2 simpr F : 2 A ran . F A ran . F
3 ovolficcss F : 2 ran . F
4 3 adantr F : 2 A ran . F ran . F
5 2 4 sstrd F : 2 A ran . F A
6 ovolcl A vol * A *
7 5 6 syl F : 2 A ran . F vol * A *
8 7 adantr F : 2 A ran . F sup ran S * < = +∞ vol * A *
9 pnfge vol * A * vol * A +∞
10 8 9 syl F : 2 A ran . F sup ran S * < = +∞ vol * A +∞
11 simpr F : 2 A ran . F sup ran S * < = +∞ sup ran S * < = +∞
12 10 11 breqtrrd F : 2 A ran . F sup ran S * < = +∞ vol * A sup ran S * <
13 eqid abs F = abs F
14 13 1 ovolsf F : 2 S : 0 +∞
15 14 adantr F : 2 A ran . F S : 0 +∞
16 15 frnd F : 2 A ran . F ran S 0 +∞
17 rge0ssre 0 +∞
18 16 17 sstrdi F : 2 A ran . F ran S
19 1nn 1
20 15 fdmd F : 2 A ran . F dom S =
21 19 20 eleqtrrid F : 2 A ran . F 1 dom S
22 21 ne0d F : 2 A ran . F dom S
23 dm0rn0 dom S = ran S =
24 23 necon3bii dom S ran S
25 22 24 sylib F : 2 A ran . F ran S
26 supxrre2 ran S ran S sup ran S * < sup ran S * < +∞
27 18 25 26 syl2anc F : 2 A ran . F sup ran S * < sup ran S * < +∞
28 27 biimpar F : 2 A ran . F sup ran S * < +∞ sup ran S * <
29 2fveq3 m = n 1 st F m = 1 st F n
30 oveq2 m = n 2 m = 2 n
31 30 oveq2d m = n x 2 2 m = x 2 2 n
32 29 31 oveq12d m = n 1 st F m x 2 2 m = 1 st F n x 2 2 n
33 2fveq3 m = n 2 nd F m = 2 nd F n
34 33 31 oveq12d m = n 2 nd F m + x 2 2 m = 2 nd F n + x 2 2 n
35 32 34 opeq12d m = n 1 st F m x 2 2 m 2 nd F m + x 2 2 m = 1 st F n x 2 2 n 2 nd F n + x 2 2 n
36 35 cbvmptv m 1 st F m x 2 2 m 2 nd F m + x 2 2 m = n 1 st F n x 2 2 n 2 nd F n + x 2 2 n
37 eqid seq 1 + abs m 1 st F m x 2 2 m 2 nd F m + x 2 2 m = seq 1 + abs m 1 st F m x 2 2 m 2 nd F m + x 2 2 m
38 simplll F : 2 A ran . F sup ran S * < x + F : 2
39 simpllr F : 2 A ran . F sup ran S * < x + A ran . F
40 simpr F : 2 A ran . F sup ran S * < x + x +
41 simplr F : 2 A ran . F sup ran S * < x + sup ran S * <
42 1 36 37 38 39 40 41 ovollb2lem F : 2 A ran . F sup ran S * < x + vol * A sup ran S * < + x
43 42 ralrimiva F : 2 A ran . F sup ran S * < x + vol * A sup ran S * < + x
44 xralrple vol * A * sup ran S * < vol * A sup ran S * < x + vol * A sup ran S * < + x
45 7 44 sylan F : 2 A ran . F sup ran S * < vol * A sup ran S * < x + vol * A sup ran S * < + x
46 43 45 mpbird F : 2 A ran . F sup ran S * < vol * A sup ran S * <
47 28 46 syldan F : 2 A ran . F sup ran S * < +∞ vol * A sup ran S * <
48 12 47 pm2.61dane F : 2 A ran . F vol * A sup ran S * <