Metamath Proof Explorer


Theorem ovolsplit

Description: The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis ovolsplit.1 φA
Assertion ovolsplit φvol*Avol*AB+𝑒vol*AB

Proof

Step Hyp Ref Expression
1 ovolsplit.1 φA
2 inundif ABAB=A
3 2 eqcomi A=ABAB
4 3 a1i φA=ABAB
5 4 fveq2d φvol*A=vol*ABAB
6 1 ssinss1d φAB
7 1 ssdifssd φAB
8 6 7 unssd φABAB
9 ovolcl ABABvol*ABAB*
10 8 9 syl φvol*ABAB*
11 pnfge vol*ABAB*vol*ABAB+∞
12 10 11 syl φvol*ABAB+∞
13 12 adantr φvol*AB=+∞vol*ABAB+∞
14 oveq1 vol*AB=+∞vol*AB+𝑒vol*AB=+∞+𝑒vol*AB
15 14 adantl φvol*AB=+∞vol*AB+𝑒vol*AB=+∞+𝑒vol*AB
16 ovolcl ABvol*AB*
17 7 16 syl φvol*AB*
18 17 adantr φvol*AB=+∞vol*AB*
19 reex V
20 19 a1i φV
21 20 1 ssexd φAV
22 21 difexd φABV
23 elpwg ABVAB𝒫AB
24 22 23 syl φAB𝒫AB
25 7 24 mpbird φAB𝒫
26 ovolf vol*:𝒫0+∞
27 26 ffvelcdmi AB𝒫vol*AB0+∞
28 25 27 syl φvol*AB0+∞
29 28 xrge0nemnfd φvol*AB−∞
30 29 adantr φvol*AB=+∞vol*AB−∞
31 xaddpnf2 vol*AB*vol*AB−∞+∞+𝑒vol*AB=+∞
32 18 30 31 syl2anc φvol*AB=+∞+∞+𝑒vol*AB=+∞
33 15 32 eqtr2d φvol*AB=+∞+∞=vol*AB+𝑒vol*AB
34 13 33 breqtrd φvol*AB=+∞vol*ABABvol*AB+𝑒vol*AB
35 simpl φ¬vol*AB=+∞φ
36 20 6 sselpwd φAB𝒫
37 26 ffvelcdmi AB𝒫vol*AB0+∞
38 36 37 syl φvol*AB0+∞
39 38 adantr φ¬vol*AB=+∞vol*AB0+∞
40 neqne ¬vol*AB=+∞vol*AB+∞
41 40 adantl φ¬vol*AB=+∞vol*AB+∞
42 ge0xrre vol*AB0+∞vol*AB+∞vol*AB
43 39 41 42 syl2anc φ¬vol*AB=+∞vol*AB
44 12 adantr φvol*AB=+∞vol*ABAB+∞
45 oveq2 vol*AB=+∞vol*AB+𝑒vol*AB=vol*AB+𝑒+∞
46 45 adantl φvol*AB=+∞vol*AB+𝑒vol*AB=vol*AB+𝑒+∞
47 ovolcl ABvol*AB*
48 6 47 syl φvol*AB*
49 38 xrge0nemnfd φvol*AB−∞
50 xaddpnf1 vol*AB*vol*AB−∞vol*AB+𝑒+∞=+∞
51 48 49 50 syl2anc φvol*AB+𝑒+∞=+∞
52 51 adantr φvol*AB=+∞vol*AB+𝑒+∞=+∞
53 46 52 eqtr2d φvol*AB=+∞+∞=vol*AB+𝑒vol*AB
54 44 53 breqtrd φvol*AB=+∞vol*ABABvol*AB+𝑒vol*AB
55 54 adantlr φvol*ABvol*AB=+∞vol*ABABvol*AB+𝑒vol*AB
56 simpll φvol*AB¬vol*AB=+∞φ
57 simplr φvol*AB¬vol*AB=+∞vol*AB
58 28 adantr φ¬vol*AB=+∞vol*AB0+∞
59 neqne ¬vol*AB=+∞vol*AB+∞
60 59 adantl φ¬vol*AB=+∞vol*AB+∞
61 ge0xrre vol*AB0+∞vol*AB+∞vol*AB
62 58 60 61 syl2anc φ¬vol*AB=+∞vol*AB
63 62 adantlr φvol*AB¬vol*AB=+∞vol*AB
64 6 3ad2ant1 φvol*ABvol*ABAB
65 simp2 φvol*ABvol*ABvol*AB
66 7 3ad2ant1 φvol*ABvol*ABAB
67 simp3 φvol*ABvol*ABvol*AB
68 ovolun ABvol*ABABvol*ABvol*ABABvol*AB+vol*AB
69 64 65 66 67 68 syl22anc φvol*ABvol*ABvol*ABABvol*AB+vol*AB
70 rexadd vol*ABvol*ABvol*AB+𝑒vol*AB=vol*AB+vol*AB
71 70 eqcomd vol*ABvol*ABvol*AB+vol*AB=vol*AB+𝑒vol*AB
72 71 3adant1 φvol*ABvol*ABvol*AB+vol*AB=vol*AB+𝑒vol*AB
73 69 72 breqtrd φvol*ABvol*ABvol*ABABvol*AB+𝑒vol*AB
74 56 57 63 73 syl3anc φvol*AB¬vol*AB=+∞vol*ABABvol*AB+𝑒vol*AB
75 55 74 pm2.61dan φvol*ABvol*ABABvol*AB+𝑒vol*AB
76 35 43 75 syl2anc φ¬vol*AB=+∞vol*ABABvol*AB+𝑒vol*AB
77 34 76 pm2.61dan φvol*ABABvol*AB+𝑒vol*AB
78 5 77 eqbrtrd φvol*Avol*AB+𝑒vol*AB