Metamath Proof Explorer


Theorem pcdvdsb

Description: P ^ A divides N if and only if A is at most the count of P . (Contributed by Mario Carneiro, 3-Oct-2014)

Ref Expression
Assertion pcdvdsb PNA0APpCntNPAN

Proof

Step Hyp Ref Expression
1 oveq2 N=0PpCntN=PpCnt0
2 1 breq2d N=0APpCntNAPpCnt0
3 breq2 N=0PANPA0
4 2 3 bibi12d N=0APpCntNPANAPpCnt0PA0
5 simpl3 PNA0N0A0
6 5 nn0zd PNA0N0A
7 simpl1 PNA0N0P
8 simpl2 PNA0N0N
9 simpr PNA0N0N0
10 pczcl PNN0PpCntN0
11 7 8 9 10 syl12anc PNA0N0PpCntN0
12 11 nn0zd PNA0N0PpCntN
13 eluz APpCntNPpCntNAAPpCntN
14 6 12 13 syl2anc PNA0N0PpCntNAAPpCntN
15 prmnn PP
16 7 15 syl PNA0N0P
17 16 nnzd PNA0N0P
18 dvdsexp PA0PpCntNAPAPPpCntN
19 18 3expia PA0PpCntNAPAPPpCntN
20 17 5 19 syl2anc PNA0N0PpCntNAPAPPpCntN
21 14 20 sylbird PNA0N0APpCntNPAPPpCntN
22 pczdvds PNN0PPpCntNN
23 7 8 9 22 syl12anc PNA0N0PPpCntNN
24 nnexpcl PA0PA
25 15 24 sylan PA0PA
26 25 3adant2 PNA0PA
27 26 nnzd PNA0PA
28 27 adantr PNA0N0PA
29 16 11 nnexpcld PNA0N0PPpCntN
30 29 nnzd PNA0N0PPpCntN
31 dvdstr PAPPpCntNNPAPPpCntNPPpCntNNPAN
32 28 30 8 31 syl3anc PNA0N0PAPPpCntNPPpCntNNPAN
33 23 32 mpan2d PNA0N0PAPPpCntNPAN
34 21 33 syld PNA0N0APpCntNPAN
35 nn0re PpCntN0PpCntN
36 nn0re A0A
37 ltnle PpCntNAPpCntN<A¬APpCntN
38 35 36 37 syl2an PpCntN0A0PpCntN<A¬APpCntN
39 nn0ltp1le PpCntN0A0PpCntN<APpCntN+1A
40 38 39 bitr3d PpCntN0A0¬APpCntNPpCntN+1A
41 11 5 40 syl2anc PNA0N0¬APpCntNPpCntN+1A
42 peano2nn0 PpCntN0PpCntN+10
43 11 42 syl PNA0N0PpCntN+10
44 43 nn0zd PNA0N0PpCntN+1
45 eluz PpCntN+1AAPpCntN+1PpCntN+1A
46 44 6 45 syl2anc PNA0N0APpCntN+1PpCntN+1A
47 dvdsexp PPpCntN+10APpCntN+1PPpCntN+1PA
48 47 3expia PPpCntN+10APpCntN+1PPpCntN+1PA
49 17 43 48 syl2anc PNA0N0APpCntN+1PPpCntN+1PA
50 46 49 sylbird PNA0N0PpCntN+1APPpCntN+1PA
51 pczndvds PNN0¬PPpCntN+1N
52 7 8 9 51 syl12anc PNA0N0¬PPpCntN+1N
53 16 43 nnexpcld PNA0N0PPpCntN+1
54 53 nnzd PNA0N0PPpCntN+1
55 dvdstr PPpCntN+1PANPPpCntN+1PAPANPPpCntN+1N
56 54 28 8 55 syl3anc PNA0N0PPpCntN+1PAPANPPpCntN+1N
57 52 56 mtod PNA0N0¬PPpCntN+1PAPAN
58 imnan PPpCntN+1PA¬PAN¬PPpCntN+1PAPAN
59 57 58 sylibr PNA0N0PPpCntN+1PA¬PAN
60 50 59 syld PNA0N0PpCntN+1A¬PAN
61 41 60 sylbid PNA0N0¬APpCntN¬PAN
62 34 61 impcon4bid PNA0N0APpCntNPAN
63 36 3ad2ant3 PNA0A
64 63 rexrd PNA0A*
65 pnfge A*A+∞
66 64 65 syl PNA0A+∞
67 pc0 PPpCnt0=+∞
68 67 3ad2ant1 PNA0PpCnt0=+∞
69 66 68 breqtrrd PNA0APpCnt0
70 dvds0 PAPA0
71 27 70 syl PNA0PA0
72 69 71 2thd PNA0APpCnt0PA0
73 4 62 72 pm2.61ne PNA0APpCntNPAN