Metamath Proof Explorer


Theorem pceulem

Description: Lemma for pceu . (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcval.1 S=supn0|Pnx<
pcval.2 T=supn0|Pny<
pceu.3 U=supn0|Pns<
pceu.4 V=supn0|Pnt<
pceu.5 φP
pceu.6 φN0
pceu.7 φxy
pceu.8 φN=xy
pceu.9 φst
pceu.10 φN=st
Assertion pceulem φST=UV

Proof

Step Hyp Ref Expression
1 pcval.1 S=supn0|Pnx<
2 pcval.2 T=supn0|Pny<
3 pceu.3 U=supn0|Pns<
4 pceu.4 V=supn0|Pnt<
5 pceu.5 φP
6 pceu.6 φN0
7 pceu.7 φxy
8 pceu.8 φN=xy
9 pceu.9 φst
10 pceu.10 φN=st
11 7 simprd φy
12 11 nncnd φy
13 9 simpld φs
14 13 zcnd φs
15 12 14 mulcomd φys=sy
16 10 8 eqtr3d φst=xy
17 9 simprd φt
18 17 nncnd φt
19 7 simpld φx
20 19 zcnd φx
21 17 nnne0d φt0
22 11 nnne0d φy0
23 14 18 20 12 21 22 divmuleqd φst=xysy=xt
24 16 23 mpbid φsy=xt
25 15 24 eqtrd φys=xt
26 25 breq2d φPzysPzxt
27 26 rabbidv φz0|Pzys=z0|Pzxt
28 oveq2 n=zPn=Pz
29 28 breq1d n=zPnysPzys
30 29 cbvrabv n0|Pnys=z0|Pzys
31 28 breq1d n=zPnxtPzxt
32 31 cbvrabv n0|Pnxt=z0|Pzxt
33 27 30 32 3eqtr4g φn0|Pnys=n0|Pnxt
34 33 supeq1d φsupn0|Pnys<=supn0|Pnxt<
35 11 nnzd φy
36 18 21 div0d φ0t=0
37 oveq1 s=0st=0t
38 37 eqeq1d s=0st=00t=0
39 36 38 syl5ibrcom φs=0st=0
40 10 eqeq1d φN=0st=0
41 39 40 sylibrd φs=0N=0
42 41 necon3d φN0s0
43 6 42 mpd φs0
44 eqid supn0|Pnys<=supn0|Pnys<
45 2 3 44 pcpremul Pyy0ss0T+U=supn0|Pnys<
46 5 35 22 13 43 45 syl122anc φT+U=supn0|Pnys<
47 12 22 div0d φ0y=0
48 oveq1 x=0xy=0y
49 48 eqeq1d x=0xy=00y=0
50 47 49 syl5ibrcom φx=0xy=0
51 8 eqeq1d φN=0xy=0
52 50 51 sylibrd φx=0N=0
53 52 necon3d φN0x0
54 6 53 mpd φx0
55 17 nnzd φt
56 eqid supn0|Pnxt<=supn0|Pnxt<
57 1 4 56 pcpremul Pxx0tt0S+V=supn0|Pnxt<
58 5 19 54 55 21 57 syl122anc φS+V=supn0|Pnxt<
59 34 46 58 3eqtr4d φT+U=S+V
60 prmuz2 PP2
61 5 60 syl φP2
62 eqid n0|Pny=n0|Pny
63 62 2 pcprecl P2yy0T0PTy
64 63 simpld P2yy0T0
65 61 35 22 64 syl12anc φT0
66 65 nn0cnd φT
67 eqid n0|Pns=n0|Pns
68 67 3 pcprecl P2ss0U0PUs
69 68 simpld P2ss0U0
70 61 13 43 69 syl12anc φU0
71 70 nn0cnd φU
72 eqid n0|Pnx=n0|Pnx
73 72 1 pcprecl P2xx0S0PSx
74 73 simpld P2xx0S0
75 61 19 54 74 syl12anc φS0
76 75 nn0cnd φS
77 eqid n0|Pnt=n0|Pnt
78 77 4 pcprecl P2tt0V0PVt
79 78 simpld P2tt0V0
80 61 55 21 79 syl12anc φV0
81 80 nn0cnd φV
82 66 71 76 81 addsubeq4d φT+U=S+VST=UV
83 59 82 mpbid φST=UV