Metamath Proof Explorer


Theorem pcocn

Description: The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010) (Proof shortened by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses pcoval.2 φFIICnJ
pcoval.3 φGIICnJ
pcoval2.4 φF1=G0
Assertion pcocn φF*𝑝JGIICnJ

Proof

Step Hyp Ref Expression
1 pcoval.2 φFIICnJ
2 pcoval.3 φGIICnJ
3 pcoval2.4 φF1=G0
4 1 2 pcoval φF*𝑝JG=x01ifx12F2xG2x1
5 iitopon IITopOn01
6 5 a1i φIITopOn01
7 6 cnmptid φx01xIICnII
8 0elunit 001
9 8 a1i φ001
10 6 6 9 cnmptc φx010IICnII
11 eqid topGenran.=topGenran.
12 eqid topGenran.𝑡012=topGenran.𝑡012
13 eqid topGenran.𝑡121=topGenran.𝑡121
14 dfii2 II=topGenran.𝑡01
15 0re 0
16 15 a1i φ0
17 1re 1
18 17 a1i φ1
19 halfre 12
20 halfge0 012
21 halflt1 12<1
22 19 17 21 ltleii 121
23 elicc01 120112012121
24 19 20 22 23 mpbir3an 1201
25 24 a1i φ1201
26 3 adantr φy=12z01F1=G0
27 simprl φy=12z01y=12
28 27 oveq2d φy=12z012y=212
29 2cn 2
30 2ne0 20
31 29 30 recidi 212=1
32 28 31 eqtrdi φy=12z012y=1
33 32 fveq2d φy=12z01F2y=F1
34 32 oveq1d φy=12z012y1=11
35 1m1e0 11=0
36 34 35 eqtrdi φy=12z012y1=0
37 36 fveq2d φy=12z01G2y1=G0
38 26 33 37 3eqtr4d φy=12z01F2y=G2y1
39 retopon topGenran.TopOn
40 iccssre 012012
41 15 19 40 mp2an 012
42 resttopon topGenran.TopOn012topGenran.𝑡012TopOn012
43 39 41 42 mp2an topGenran.𝑡012TopOn012
44 43 a1i φtopGenran.𝑡012TopOn012
45 44 6 cnmpt1st φy012,z01ytopGenran.𝑡012×tIICntopGenran.𝑡012
46 12 iihalf1cn x0122xtopGenran.𝑡012CnII
47 46 a1i φx0122xtopGenran.𝑡012CnII
48 oveq2 x=y2x=2y
49 44 6 45 44 47 48 cnmpt21 φy012,z012ytopGenran.𝑡012×tIICnII
50 44 6 49 1 cnmpt21f φy012,z01F2ytopGenran.𝑡012×tIICnJ
51 iccssre 121121
52 19 17 51 mp2an 121
53 resttopon topGenran.TopOn121topGenran.𝑡121TopOn121
54 39 52 53 mp2an topGenran.𝑡121TopOn121
55 54 a1i φtopGenran.𝑡121TopOn121
56 55 6 cnmpt1st φy121,z01ytopGenran.𝑡121×tIICntopGenran.𝑡121
57 13 iihalf2cn x1212x1topGenran.𝑡121CnII
58 57 a1i φx1212x1topGenran.𝑡121CnII
59 48 oveq1d x=y2x1=2y1
60 55 6 56 55 58 59 cnmpt21 φy121,z012y1topGenran.𝑡121×tIICnII
61 55 6 60 2 cnmpt21f φy121,z01G2y1topGenran.𝑡121×tIICnJ
62 11 12 13 14 16 18 25 6 38 50 61 cnmpopc φy01,z01ify12F2yG2y1II×tIICnJ
63 breq1 y=xy12x12
64 oveq2 y=x2y=2x
65 64 fveq2d y=xF2y=F2x
66 64 oveq1d y=x2y1=2x1
67 66 fveq2d y=xG2y1=G2x1
68 63 65 67 ifbieq12d y=xify12F2yG2y1=ifx12F2xG2x1
69 68 adantr y=xz=0ify12F2yG2y1=ifx12F2xG2x1
70 6 7 10 6 6 62 69 cnmpt12 φx01ifx12F2xG2x1IICnJ
71 4 70 eqeltrd φF*𝑝JGIICnJ