Metamath Proof Explorer


Theorem pell14qrgt0

Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014)

Ref Expression
Assertion pell14qrgt0 DAPell14QRD0<A

Proof

Step Hyp Ref Expression
1 elpell14qr DAPell14QRDAa0bA=a+Dba2Db2=1
2 0cnd DAa0ba2Db2=10
3 eldifi DD
4 3 ad3antrrr DAa0ba2Db2=1D
5 4 nnred DAa0ba2Db2=1D
6 4 nnnn0d DAa0ba2Db2=1D0
7 6 nn0ge0d DAa0ba2Db2=10D
8 5 7 resqrtcld DAa0ba2Db2=1D
9 zre bb
10 9 adantl a0bb
11 10 ad2antlr DAa0ba2Db2=1b
12 8 11 remulcld DAa0ba2Db2=1Db
13 12 recnd DAa0ba2Db2=1Db
14 2 13 abssubd DAa0ba2Db2=10Db=Db0
15 13 subid1d DAa0ba2Db2=1Db0=Db
16 15 fveq2d DAa0ba2Db2=1Db0=Db
17 14 16 eqtrd DAa0ba2Db2=10Db=Db
18 absresq DbDb2=Db2
19 12 18 syl DAa0ba2Db2=1Db2=Db2
20 5 recnd DAa0ba2Db2=1D
21 20 sqrtcld DAa0ba2Db2=1D
22 10 recnd a0bb
23 22 ad2antlr DAa0ba2Db2=1b
24 21 23 sqmuld DAa0ba2Db2=1Db2=D2b2
25 20 sqsqrtd DAa0ba2Db2=1D2=D
26 25 oveq1d DAa0ba2Db2=1D2b2=Db2
27 19 24 26 3eqtrd DAa0ba2Db2=1Db2=Db2
28 0lt1 0<1
29 simpr DAa0ba2Db2=1a2Db2=1
30 28 29 breqtrrid DAa0ba2Db2=10<a2Db2
31 11 resqcld DAa0ba2Db2=1b2
32 5 31 remulcld DAa0ba2Db2=1Db2
33 nn0re a0a
34 33 adantr a0ba
35 34 ad2antlr DAa0ba2Db2=1a
36 35 resqcld DAa0ba2Db2=1a2
37 32 36 posdifd DAa0ba2Db2=1Db2<a20<a2Db2
38 30 37 mpbird DAa0ba2Db2=1Db2<a2
39 27 38 eqbrtrd DAa0ba2Db2=1Db2<a2
40 13 abscld DAa0ba2Db2=1Db
41 13 absge0d DAa0ba2Db2=10Db
42 nn0ge0 a00a
43 42 adantr a0b0a
44 43 ad2antlr DAa0ba2Db2=10a
45 40 35 41 44 lt2sqd DAa0ba2Db2=1Db<aDb2<a2
46 39 45 mpbird DAa0ba2Db2=1Db<a
47 17 46 eqbrtrd DAa0ba2Db2=10Db<a
48 0red DAa0ba2Db2=10
49 48 12 35 absdifltd DAa0ba2Db2=10Db<aDba<00<Db+a
50 47 49 mpbid DAa0ba2Db2=1Dba<00<Db+a
51 50 simprd DAa0ba2Db2=10<Db+a
52 nn0cn a0a
53 52 adantr a0ba
54 53 ad2antlr DAa0ba2Db2=1a
55 54 13 addcomd DAa0ba2Db2=1a+Db=Db+a
56 51 55 breqtrrd DAa0ba2Db2=10<a+Db
57 56 adantrl DAa0bA=a+Dba2Db2=10<a+Db
58 simprl DAa0bA=a+Dba2Db2=1A=a+Db
59 57 58 breqtrrd DAa0bA=a+Dba2Db2=10<A
60 59 ex DAa0bA=a+Dba2Db2=10<A
61 60 rexlimdvva DAa0bA=a+Dba2Db2=10<A
62 61 expimpd DAa0bA=a+Dba2Db2=10<A
63 1 62 sylbid DAPell14QRD0<A
64 63 imp DAPell14QRD0<A