Description: Lemma for pellex . Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of vandenDries p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pellexlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn | |
|
2 | 1 | 3ad2ant2 | |
3 | 2 | sqcld | |
4 | nncn | |
|
5 | 4 | 3ad2ant1 | |
6 | nncn | |
|
7 | 6 | 3ad2ant3 | |
8 | 7 | sqcld | |
9 | 5 8 | mulcld | |
10 | 3 9 | subeq0ad | |
11 | nnne0 | |
|
12 | 11 | 3ad2ant3 | |
13 | sqne0 | |
|
14 | 7 13 | syl | |
15 | 12 14 | mpbird | |
16 | 3 5 8 15 | divmul3d | |
17 | sqdiv | |
|
18 | 17 | fveq2d | |
19 | 2 7 12 18 | syl3anc | |
20 | nnre | |
|
21 | 20 | 3ad2ant2 | |
22 | nnre | |
|
23 | 22 | 3ad2ant3 | |
24 | 21 23 12 | redivcld | |
25 | nnnn0 | |
|
26 | 25 | nn0ge0d | |
27 | 26 | 3ad2ant2 | |
28 | nngt0 | |
|
29 | 28 | 3ad2ant3 | |
30 | divge0 | |
|
31 | 21 27 23 29 30 | syl22anc | |
32 | 24 31 | sqrtsqd | |
33 | 19 32 | eqtr3d | |
34 | nnq | |
|
35 | 34 | 3ad2ant2 | |
36 | nnq | |
|
37 | 36 | 3ad2ant3 | |
38 | qdivcl | |
|
39 | 35 37 12 38 | syl3anc | |
40 | 33 39 | eqeltrd | |
41 | fveq2 | |
|
42 | 41 | eleq1d | |
43 | 40 42 | syl5ibcom | |
44 | 16 43 | sylbird | |
45 | 10 44 | sylbid | |
46 | 45 | necon3bd | |
47 | 46 | imp | |