Metamath Proof Explorer


Theorem pellexlem1

Description: Lemma for pellex . Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of vandenDries p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014)

Ref Expression
Assertion pellexlem1 DAB¬DA2DB20

Proof

Step Hyp Ref Expression
1 nncn AA
2 1 3ad2ant2 DABA
3 2 sqcld DABA2
4 nncn DD
5 4 3ad2ant1 DABD
6 nncn BB
7 6 3ad2ant3 DABB
8 7 sqcld DABB2
9 5 8 mulcld DABDB2
10 3 9 subeq0ad DABA2DB2=0A2=DB2
11 nnne0 BB0
12 11 3ad2ant3 DABB0
13 sqne0 BB20B0
14 7 13 syl DABB20B0
15 12 14 mpbird DABB20
16 3 5 8 15 divmul3d DABA2B2=DA2=DB2
17 sqdiv ABB0AB2=A2B2
18 17 fveq2d ABB0AB2=A2B2
19 2 7 12 18 syl3anc DABAB2=A2B2
20 nnre AA
21 20 3ad2ant2 DABA
22 nnre BB
23 22 3ad2ant3 DABB
24 21 23 12 redivcld DABAB
25 nnnn0 AA0
26 25 nn0ge0d A0A
27 26 3ad2ant2 DAB0A
28 nngt0 B0<B
29 28 3ad2ant3 DAB0<B
30 divge0 A0AB0<B0AB
31 21 27 23 29 30 syl22anc DAB0AB
32 24 31 sqrtsqd DABAB2=AB
33 19 32 eqtr3d DABA2B2=AB
34 nnq AA
35 34 3ad2ant2 DABA
36 nnq BB
37 36 3ad2ant3 DABB
38 qdivcl ABB0AB
39 35 37 12 38 syl3anc DABAB
40 33 39 eqeltrd DABA2B2
41 fveq2 A2B2=DA2B2=D
42 41 eleq1d A2B2=DA2B2D
43 40 42 syl5ibcom DABA2B2=DD
44 16 43 sylbird DABA2=DB2D
45 10 44 sylbid DABA2DB2=0D
46 45 necon3bd DAB¬DA2DB20
47 46 imp DAB¬DA2DB20