Metamath Proof Explorer


Theorem pjnmopi

Description: The operator norm of a projector on a nonzero closed subspace is one. Part of Theorem 26.1 of Halmos p. 43. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjhmop.1 HC
Assertion pjnmopi H0normopprojH=1

Proof

Step Hyp Ref Expression
1 pjhmop.1 HC
2 1 pjfi projH:
3 nmopval projH:normopprojH=supx|ynormy1x=normprojHy*<
4 2 3 ax-mp normopprojH=supx|ynormy1x=normprojHy*<
5 vex zV
6 eqeq1 x=zx=normprojHyz=normprojHy
7 6 anbi2d x=znormy1x=normprojHynormy1z=normprojHy
8 7 rexbidv x=zynormy1x=normprojHyynormy1z=normprojHy
9 5 8 elab zx|ynormy1x=normprojHyynormy1z=normprojHy
10 pjnorm HCynormprojHynormy
11 1 10 mpan ynormprojHynormy
12 1 pjhcli yprojHy
13 normcl projHynormprojHy
14 12 13 syl ynormprojHy
15 normcl ynormy
16 1re 1
17 letr normprojHynormy1normprojHynormynormy1normprojHy1
18 16 17 mp3an3 normprojHynormynormprojHynormynormy1normprojHy1
19 14 15 18 syl2anc ynormprojHynormynormy1normprojHy1
20 11 19 mpand ynormy1normprojHy1
21 20 imp ynormy1normprojHy1
22 breq1 z=normprojHyz1normprojHy1
23 22 biimparc normprojHy1z=normprojHyz1
24 21 23 sylan ynormy1z=normprojHyz1
25 24 expl ynormy1z=normprojHyz1
26 25 rexlimiv ynormy1z=normprojHyz1
27 9 26 sylbi zx|ynormy1x=normprojHyz1
28 27 rgen zx|ynormy1x=normprojHyz1
29 1 cheli yHy
30 29 adantr yHnormy=1y
31 29 15 syl yHnormy
32 eqle normynormy=1normy1
33 31 32 sylan yHnormy=1normy1
34 pjid HCyHprojHy=y
35 1 34 mpan yHprojHy=y
36 35 fveq2d yHnormprojHy=normy
37 36 adantr yHnormy=1normprojHy=normy
38 simpr yHnormy=1normy=1
39 37 38 eqtr2d yHnormy=11=normprojHy
40 30 33 39 jca32 yHnormy=1ynormy11=normprojHy
41 40 reximi2 yHnormy=1ynormy11=normprojHy
42 1 chne0i H0yHy0
43 1 chshii HS
44 43 norm1exi yHy0yHnormy=1
45 42 44 bitri H0yHnormy=1
46 1ex 1V
47 eqeq1 x=1x=normprojHy1=normprojHy
48 47 anbi2d x=1normy1x=normprojHynormy11=normprojHy
49 48 rexbidv x=1ynormy1x=normprojHyynormy11=normprojHy
50 46 49 elab 1x|ynormy1x=normprojHyynormy11=normprojHy
51 41 45 50 3imtr4i H01x|ynormy1x=normprojHy
52 breq2 w=1z<wz<1
53 52 rspcev 1x|ynormy1x=normprojHyz<1wx|ynormy1x=normprojHyz<w
54 51 53 sylan H0z<1wx|ynormy1x=normprojHyz<w
55 54 ex H0z<1wx|ynormy1x=normprojHyz<w
56 55 ralrimivw H0zz<1wx|ynormy1x=normprojHyz<w
57 nmopsetretHIL projH:x|ynormy1x=normprojHy
58 2 57 ax-mp x|ynormy1x=normprojHy
59 ressxr *
60 58 59 sstri x|ynormy1x=normprojHy*
61 1xr 1*
62 supxr2 x|ynormy1x=normprojHy*1*zx|ynormy1x=normprojHyz1zz<1wx|ynormy1x=normprojHyz<wsupx|ynormy1x=normprojHy*<=1
63 60 61 62 mpanl12 zx|ynormy1x=normprojHyz1zz<1wx|ynormy1x=normprojHyz<wsupx|ynormy1x=normprojHy*<=1
64 28 56 63 sylancr H0supx|ynormy1x=normprojHy*<=1
65 4 64 eqtrid H0normopprojH=1