Metamath Proof Explorer


Theorem plymullem

Description: Lemma for plymul . (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1 φ F Poly S
plyadd.2 φ G Poly S
plyadd.3 φ x S y S x + y S
plyadd.m φ M 0
plyadd.n φ N 0
plyadd.a φ A S 0 0
plyadd.b φ B S 0 0
plyadd.a2 φ A M + 1 = 0
plyadd.b2 φ B N + 1 = 0
plyadd.f φ F = z k = 0 M A k z k
plyadd.g φ G = z k = 0 N B k z k
plymul.x φ x S y S x y S
Assertion plymullem φ F × f G Poly S

Proof

Step Hyp Ref Expression
1 plyadd.1 φ F Poly S
2 plyadd.2 φ G Poly S
3 plyadd.3 φ x S y S x + y S
4 plyadd.m φ M 0
5 plyadd.n φ N 0
6 plyadd.a φ A S 0 0
7 plyadd.b φ B S 0 0
8 plyadd.a2 φ A M + 1 = 0
9 plyadd.b2 φ B N + 1 = 0
10 plyadd.f φ F = z k = 0 M A k z k
11 plyadd.g φ G = z k = 0 N B k z k
12 plymul.x φ x S y S x y S
13 plybss F Poly S S
14 1 13 syl φ S
15 0cnd φ 0
16 15 snssd φ 0
17 14 16 unssd φ S 0
18 cnex V
19 ssexg S 0 V S 0 V
20 17 18 19 sylancl φ S 0 V
21 nn0ex 0 V
22 elmapg S 0 V 0 V A S 0 0 A : 0 S 0
23 20 21 22 sylancl φ A S 0 0 A : 0 S 0
24 6 23 mpbid φ A : 0 S 0
25 24 17 fssd φ A : 0
26 elmapg S 0 V 0 V B S 0 0 B : 0 S 0
27 20 21 26 sylancl φ B S 0 0 B : 0 S 0
28 7 27 mpbid φ B : 0 S 0
29 28 17 fssd φ B : 0
30 1 2 4 5 25 29 8 9 10 11 plymullem1 φ F × f G = z n = 0 M + N k = 0 n A k B n k z n
31 4 5 nn0addcld φ M + N 0
32 eqid S 0 = S 0
33 14 32 3 un0addcl φ x S 0 y S 0 x + y S 0
34 fzfid φ 0 n Fin
35 elfznn0 k 0 n k 0
36 ffvelrn A : 0 S 0 k 0 A k S 0
37 24 35 36 syl2an φ k 0 n A k S 0
38 fznn0sub k 0 n n k 0
39 ffvelrn B : 0 S 0 n k 0 B n k S 0
40 28 38 39 syl2an φ k 0 n B n k S 0
41 37 40 jca φ k 0 n A k S 0 B n k S 0
42 14 32 12 un0mulcl φ x S 0 y S 0 x y S 0
43 42 caovclg φ A k S 0 B n k S 0 A k B n k S 0
44 41 43 syldan φ k 0 n A k B n k S 0
45 ssun2 0 S 0
46 c0ex 0 V
47 46 snss 0 S 0 0 S 0
48 45 47 mpbir 0 S 0
49 48 a1i φ 0 S 0
50 17 33 34 44 49 fsumcllem φ k = 0 n A k B n k S 0
51 50 adantr φ n 0 M + N k = 0 n A k B n k S 0
52 17 31 51 elplyd φ z n = 0 M + N k = 0 n A k B n k z n Poly S 0
53 30 52 eqeltrd φ F × f G Poly S 0
54 plyun0 Poly S 0 = Poly S
55 53 54 eleqtrdi φ F × f G Poly S