Metamath Proof Explorer


Theorem pntleme

Description: Lemma for pnt . Package up pntlemo in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
pntlem1.y φY+1Y
pntlem1.x φX+Y<X
pntlem1.c φC+
pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
pntleme.U φzY+∞RzzU
pntleme.K φkK+∞yX+∞z+y<z1+LEz<kyuz1+LEzRuuE
pntleme.C φz1+∞Rzlogz2logzi=1zYRzilogizC
Assertion pntleme φw+vw+∞RvvUFU3

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 pntlem1.y φY+1Y
12 pntlem1.x φX+Y<X
13 pntlem1.c φC+
14 pntlem1.w W=Y+4LE2+XK24+e32BUELE2U3+C
15 pntleme.U φzY+∞RzzU
16 pntleme.K φkK+∞yX+∞z+y<z1+LEz<kyuz1+LEzRuuE
17 pntleme.C φz1+∞Rzlogz2logzi=1zYRzilogizC
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 pntlema φW+
19 2 adantr φvW+∞A+
20 3 adantr φvW+∞B+
21 4 adantr φvW+∞L01
22 7 adantr φvW+∞U+
23 8 adantr φvW+∞UA
24 11 adantr φvW+∞Y+1Y
25 12 adantr φvW+∞X+Y<X
26 13 adantr φvW+∞C+
27 simpr φvW+∞vW+∞
28 eqid logXlogK+1=logXlogK+1
29 eqid logvlogK2=logvlogK2
30 15 adantr φvW+∞zY+∞RzzU
31 oveq1 k=Kky=Ky
32 31 breq2d k=K1+LEz<ky1+LEz<Ky
33 32 anbi2d k=Ky<z1+LEz<kyy<z1+LEz<Ky
34 33 anbi1d k=Ky<z1+LEz<kyuz1+LEzRuuEy<z1+LEz<Kyuz1+LEzRuuE
35 34 rexbidv k=Kz+y<z1+LEz<kyuz1+LEzRuuEz+y<z1+LEz<Kyuz1+LEzRuuE
36 35 ralbidv k=KyX+∞z+y<z1+LEz<kyuz1+LEzRuuEyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
37 1 2 3 4 5 6 7 8 9 10 pntlemc φE+K+E011<KUE+
38 37 simp2d φK+
39 38 rpxrd φK*
40 pnfxr +∞*
41 40 a1i φ+∞*
42 38 rpred φK
43 42 ltpnfd φK<+∞
44 lbico1 K*+∞*K<+∞KK+∞
45 39 41 43 44 syl3anc φKK+∞
46 36 16 45 rspcdva φyX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
47 46 adantr φvW+∞yX+∞z+y<z1+LEz<Kyuz1+LEzRuuE
48 17 adantr φvW+∞z1+∞Rzlogz2logzi=1zYRzilogizC
49 1 19 20 21 5 6 22 23 9 10 24 25 26 14 27 28 29 30 47 48 pntlemo φvW+∞RvvUFU3
50 49 ralrimiva φvW+∞RvvUFU3
51 oveq1 w=Ww+∞=W+∞
52 51 raleqdv w=Wvw+∞RvvUFU3vW+∞RvvUFU3
53 52 rspcev W+vW+∞RvvUFU3w+vw+∞RvvUFU3
54 18 50 53 syl2anc φw+vw+∞RvvUFU3