Description: Lemma for pnt . Package up pntlemo in quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pntlem1.r | |
|
pntlem1.a | |
||
pntlem1.b | |
||
pntlem1.l | |
||
pntlem1.d | |
||
pntlem1.f | |
||
pntlem1.u | |
||
pntlem1.u2 | |
||
pntlem1.e | |
||
pntlem1.k | |
||
pntlem1.y | |
||
pntlem1.x | |
||
pntlem1.c | |
||
pntlem1.w | |
||
pntleme.U | |
||
pntleme.K | |
||
pntleme.C | |
||
Assertion | pntleme | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntlem1.r | |
|
2 | pntlem1.a | |
|
3 | pntlem1.b | |
|
4 | pntlem1.l | |
|
5 | pntlem1.d | |
|
6 | pntlem1.f | |
|
7 | pntlem1.u | |
|
8 | pntlem1.u2 | |
|
9 | pntlem1.e | |
|
10 | pntlem1.k | |
|
11 | pntlem1.y | |
|
12 | pntlem1.x | |
|
13 | pntlem1.c | |
|
14 | pntlem1.w | |
|
15 | pntleme.U | |
|
16 | pntleme.K | |
|
17 | pntleme.C | |
|
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | pntlema | |
19 | 2 | adantr | |
20 | 3 | adantr | |
21 | 4 | adantr | |
22 | 7 | adantr | |
23 | 8 | adantr | |
24 | 11 | adantr | |
25 | 12 | adantr | |
26 | 13 | adantr | |
27 | simpr | |
|
28 | eqid | |
|
29 | eqid | |
|
30 | 15 | adantr | |
31 | oveq1 | |
|
32 | 31 | breq2d | |
33 | 32 | anbi2d | |
34 | 33 | anbi1d | |
35 | 34 | rexbidv | |
36 | 35 | ralbidv | |
37 | 1 2 3 4 5 6 7 8 9 10 | pntlemc | |
38 | 37 | simp2d | |
39 | 38 | rpxrd | |
40 | pnfxr | |
|
41 | 40 | a1i | |
42 | 38 | rpred | |
43 | 42 | ltpnfd | |
44 | lbico1 | |
|
45 | 39 41 43 44 | syl3anc | |
46 | 36 16 45 | rspcdva | |
47 | 46 | adantr | |
48 | 17 | adantr | |
49 | 1 19 20 21 5 6 22 23 9 10 24 25 26 14 27 28 29 30 47 48 | pntlemo | |
50 | 49 | ralrimiva | |
51 | oveq1 | |
|
52 | 51 | raleqdv | |
53 | 52 | rspcev | |
54 | 18 50 53 | syl2anc | |