Metamath Proof Explorer


Theorem pntpbnd

Description: Lemma for pnt . Establish smallness of R at a point. Lemma 10.6.1 in Shapiro, p. 436. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypothesis pntibnd.r R=a+ψaa
Assertion pntpbnd c+e01x+kece+∞yx+∞ny<nnkyRnne

Proof

Step Hyp Ref Expression
1 pntibnd.r R=a+ψaa
2 1 pntrsumbnd2 d+ijn=ijRnnn+1d
3 simpl d+ijn=ijRnnn+1dd+
4 2rp 2+
5 rpaddcl d+2+d+2+
6 3 4 5 sylancl d+ijn=ijRnnn+1dd+2+
7 2re 2
8 elioore e01e
9 8 adantl d+ijn=ijRnnn+1de01e
10 eliooord e010<ee<1
11 10 adantl d+ijn=ijRnnn+1de010<ee<1
12 11 simpld d+ijn=ijRnnn+1de010<e
13 9 12 elrpd d+ijn=ijRnnn+1de01e+
14 rerpdivcl 2e+2e
15 7 13 14 sylancr d+ijn=ijRnnn+1de012e
16 15 rpefcld d+ijn=ijRnnn+1de01e2e+
17 simpllr d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnnee01
18 eqid e2e=e2e
19 simplrr d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnneye2e+∞
20 simp-4l d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnned+
21 simp-4r d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnneijn=ijRnnn+1d
22 eqid d+2=d+2
23 simplrl d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnneked+2e+∞
24 simpr d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnne¬ny<nnkyRnne
25 1 17 18 19 20 21 22 23 24 pntpbnd2 ¬d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnne
26 iman d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞ny<nnkyRnne¬d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞¬ny<nnkyRnne
27 25 26 mpbir d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞ny<nnkyRnne
28 27 ralrimivva d+ijn=ijRnnn+1de01ked+2e+∞ye2e+∞ny<nnkyRnne
29 oveq1 x=e2ex+∞=e2e+∞
30 29 raleqdv x=e2eyx+∞ny<nnkyRnneye2e+∞ny<nnkyRnne
31 30 ralbidv x=e2eked+2e+∞yx+∞ny<nnkyRnneked+2e+∞ye2e+∞ny<nnkyRnne
32 31 rspcev e2e+ked+2e+∞ye2e+∞ny<nnkyRnnex+ked+2e+∞yx+∞ny<nnkyRnne
33 16 28 32 syl2anc d+ijn=ijRnnn+1de01x+ked+2e+∞yx+∞ny<nnkyRnne
34 33 ralrimiva d+ijn=ijRnnn+1de01x+ked+2e+∞yx+∞ny<nnkyRnne
35 fvoveq1 c=d+2ece=ed+2e
36 35 oveq1d c=d+2ece+∞=ed+2e+∞
37 36 raleqdv c=d+2kece+∞yx+∞ny<nnkyRnneked+2e+∞yx+∞ny<nnkyRnne
38 37 rexbidv c=d+2x+kece+∞yx+∞ny<nnkyRnnex+ked+2e+∞yx+∞ny<nnkyRnne
39 38 ralbidv c=d+2e01x+kece+∞yx+∞ny<nnkyRnnee01x+ked+2e+∞yx+∞ny<nnkyRnne
40 39 rspcev d+2+e01x+ked+2e+∞yx+∞ny<nnkyRnnec+e01x+kece+∞yx+∞ny<nnkyRnne
41 6 34 40 syl2anc d+ijn=ijRnnn+1dc+e01x+kece+∞yx+∞ny<nnkyRnne
42 41 rexlimiva d+ijn=ijRnnn+1dc+e01x+kece+∞yx+∞ny<nnkyRnne
43 2 42 ax-mp c+e01x+kece+∞yx+∞ny<nnkyRnne