Metamath Proof Explorer


Theorem pntsval2

Description: The Selberg function can be expressed using the convolution product of the von Mangoldt function with itself. (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypothesis pntsval.1 S = a i = 1 a Λ i log i + ψ a i
Assertion pntsval2 A S A = n = 1 A Λ n log n + m y | y n Λ m Λ n m

Proof

Step Hyp Ref Expression
1 pntsval.1 S = a i = 1 a Λ i log i + ψ a i
2 1 pntsval A S A = n = 1 A Λ n log n + ψ A n
3 elfznn n 1 A n
4 3 adantl A n 1 A n
5 vmacl n Λ n
6 4 5 syl A n 1 A Λ n
7 6 recnd A n 1 A Λ n
8 4 nnrpd A n 1 A n +
9 8 relogcld A n 1 A log n
10 9 recnd A n 1 A log n
11 simpl A n 1 A A
12 11 4 nndivred A n 1 A A n
13 chpcl A n ψ A n
14 12 13 syl A n 1 A ψ A n
15 14 recnd A n 1 A ψ A n
16 7 10 15 adddid A n 1 A Λ n log n + ψ A n = Λ n log n + Λ n ψ A n
17 16 sumeq2dv A n = 1 A Λ n log n + ψ A n = n = 1 A Λ n log n + Λ n ψ A n
18 fveq2 n = m Λ n = Λ m
19 oveq2 n = m A n = A m
20 19 fveq2d n = m ψ A n = ψ A m
21 18 20 oveq12d n = m Λ n ψ A n = Λ m ψ A m
22 21 cbvsumv n = 1 A Λ n ψ A n = m = 1 A Λ m ψ A m
23 fzfid A m 1 A 1 A m Fin
24 elfznn m 1 A m
25 24 adantl A m 1 A m
26 vmacl m Λ m
27 25 26 syl A m 1 A Λ m
28 27 recnd A m 1 A Λ m
29 elfznn k 1 A m k
30 29 adantl A m 1 A k 1 A m k
31 vmacl k Λ k
32 30 31 syl A m 1 A k 1 A m Λ k
33 32 recnd A m 1 A k 1 A m Λ k
34 23 28 33 fsummulc2 A m 1 A Λ m k = 1 A m Λ k = k = 1 A m Λ m Λ k
35 simpl A m 1 A A
36 35 25 nndivred A m 1 A A m
37 chpval A m ψ A m = k = 1 A m Λ k
38 36 37 syl A m 1 A ψ A m = k = 1 A m Λ k
39 38 oveq2d A m 1 A Λ m ψ A m = Λ m k = 1 A m Λ k
40 30 nncnd A m 1 A k 1 A m k
41 24 ad2antlr A m 1 A k 1 A m m
42 41 nncnd A m 1 A k 1 A m m
43 41 nnne0d A m 1 A k 1 A m m 0
44 40 42 43 divcan3d A m 1 A k 1 A m m k m = k
45 44 fveq2d A m 1 A k 1 A m Λ m k m = Λ k
46 45 oveq2d A m 1 A k 1 A m Λ m Λ m k m = Λ m Λ k
47 46 sumeq2dv A m 1 A k = 1 A m Λ m Λ m k m = k = 1 A m Λ m Λ k
48 34 39 47 3eqtr4d A m 1 A Λ m ψ A m = k = 1 A m Λ m Λ m k m
49 48 sumeq2dv A m = 1 A Λ m ψ A m = m = 1 A k = 1 A m Λ m Λ m k m
50 fvoveq1 n = m k Λ n m = Λ m k m
51 50 oveq2d n = m k Λ m Λ n m = Λ m Λ m k m
52 id A A
53 ssrab2 y | y n
54 simpr A n 1 A m y | y n m y | y n
55 53 54 sselid A n 1 A m y | y n m
56 55 26 syl A n 1 A m y | y n Λ m
57 dvdsdivcl n m y | y n n m y | y n
58 4 57 sylan A n 1 A m y | y n n m y | y n
59 53 58 sselid A n 1 A m y | y n n m
60 vmacl n m Λ n m
61 59 60 syl A n 1 A m y | y n Λ n m
62 56 61 remulcld A n 1 A m y | y n Λ m Λ n m
63 62 recnd A n 1 A m y | y n Λ m Λ n m
64 63 anasss A n 1 A m y | y n Λ m Λ n m
65 51 52 64 dvdsflsumcom A n = 1 A m y | y n Λ m Λ n m = m = 1 A k = 1 A m Λ m Λ m k m
66 49 65 eqtr4d A m = 1 A Λ m ψ A m = n = 1 A m y | y n Λ m Λ n m
67 22 66 eqtrid A n = 1 A Λ n ψ A n = n = 1 A m y | y n Λ m Λ n m
68 67 oveq2d A n = 1 A Λ n log n + n = 1 A Λ n ψ A n = n = 1 A Λ n log n + n = 1 A m y | y n Λ m Λ n m
69 fzfid A 1 A Fin
70 7 10 mulcld A n 1 A Λ n log n
71 7 15 mulcld A n 1 A Λ n ψ A n
72 69 70 71 fsumadd A n = 1 A Λ n log n + Λ n ψ A n = n = 1 A Λ n log n + n = 1 A Λ n ψ A n
73 fzfid A n 1 A 1 n Fin
74 dvdsssfz1 n y | y n 1 n
75 4 74 syl A n 1 A y | y n 1 n
76 73 75 ssfid A n 1 A y | y n Fin
77 76 62 fsumrecl A n 1 A m y | y n Λ m Λ n m
78 77 recnd A n 1 A m y | y n Λ m Λ n m
79 69 70 78 fsumadd A n = 1 A Λ n log n + m y | y n Λ m Λ n m = n = 1 A Λ n log n + n = 1 A m y | y n Λ m Λ n m
80 68 72 79 3eqtr4d A n = 1 A Λ n log n + Λ n ψ A n = n = 1 A Λ n log n + m y | y n Λ m Λ n m
81 2 17 80 3eqtrd A S A = n = 1 A Λ n log n + m y | y n Λ m Λ n m