| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntsval.1 |  | 
						
							| 2 | 1 | pntsval |  | 
						
							| 3 |  | elfznn |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | vmacl |  | 
						
							| 6 | 4 5 | syl |  | 
						
							| 7 | 6 | recnd |  | 
						
							| 8 | 4 | nnrpd |  | 
						
							| 9 | 8 | relogcld |  | 
						
							| 10 | 9 | recnd |  | 
						
							| 11 |  | simpl |  | 
						
							| 12 | 11 4 | nndivred |  | 
						
							| 13 |  | chpcl |  | 
						
							| 14 | 12 13 | syl |  | 
						
							| 15 | 14 | recnd |  | 
						
							| 16 | 7 10 15 | adddid |  | 
						
							| 17 | 16 | sumeq2dv |  | 
						
							| 18 |  | fveq2 |  | 
						
							| 19 |  | oveq2 |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 | 18 20 | oveq12d |  | 
						
							| 22 | 21 | cbvsumv |  | 
						
							| 23 |  | fzfid |  | 
						
							| 24 |  | elfznn |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | vmacl |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 27 | recnd |  | 
						
							| 29 |  | elfznn |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 |  | vmacl |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 | 32 | recnd |  | 
						
							| 34 | 23 28 33 | fsummulc2 |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 | 35 25 | nndivred |  | 
						
							| 37 |  | chpval |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 30 | nncnd |  | 
						
							| 41 | 24 | ad2antlr |  | 
						
							| 42 | 41 | nncnd |  | 
						
							| 43 | 41 | nnne0d |  | 
						
							| 44 | 40 42 43 | divcan3d |  | 
						
							| 45 | 44 | fveq2d |  | 
						
							| 46 | 45 | oveq2d |  | 
						
							| 47 | 46 | sumeq2dv |  | 
						
							| 48 | 34 39 47 | 3eqtr4d |  | 
						
							| 49 | 48 | sumeq2dv |  | 
						
							| 50 |  | fvoveq1 |  | 
						
							| 51 | 50 | oveq2d |  | 
						
							| 52 |  | id |  | 
						
							| 53 |  | ssrab2 |  | 
						
							| 54 |  | simpr |  | 
						
							| 55 | 53 54 | sselid |  | 
						
							| 56 | 55 26 | syl |  | 
						
							| 57 |  | dvdsdivcl |  | 
						
							| 58 | 4 57 | sylan |  | 
						
							| 59 | 53 58 | sselid |  | 
						
							| 60 |  | vmacl |  | 
						
							| 61 | 59 60 | syl |  | 
						
							| 62 | 56 61 | remulcld |  | 
						
							| 63 | 62 | recnd |  | 
						
							| 64 | 63 | anasss |  | 
						
							| 65 | 51 52 64 | dvdsflsumcom |  | 
						
							| 66 | 49 65 | eqtr4d |  | 
						
							| 67 | 22 66 | eqtrid |  | 
						
							| 68 | 67 | oveq2d |  | 
						
							| 69 |  | fzfid |  | 
						
							| 70 | 7 10 | mulcld |  | 
						
							| 71 | 7 15 | mulcld |  | 
						
							| 72 | 69 70 71 | fsumadd |  | 
						
							| 73 |  | fzfid |  | 
						
							| 74 |  | dvdsssfz1 |  | 
						
							| 75 | 4 74 | syl |  | 
						
							| 76 | 73 75 | ssfid |  | 
						
							| 77 | 76 62 | fsumrecl |  | 
						
							| 78 | 77 | recnd |  | 
						
							| 79 | 69 70 78 | fsumadd |  | 
						
							| 80 | 68 72 79 | 3eqtr4d |  | 
						
							| 81 | 2 17 80 | 3eqtrd |  |