Step |
Hyp |
Ref |
Expression |
1 |
|
pntsval.1 |
|
2 |
1
|
pntsval |
|
3 |
|
elfznn |
|
4 |
3
|
adantl |
|
5 |
|
vmacl |
|
6 |
4 5
|
syl |
|
7 |
6
|
recnd |
|
8 |
4
|
nnrpd |
|
9 |
8
|
relogcld |
|
10 |
9
|
recnd |
|
11 |
|
simpl |
|
12 |
11 4
|
nndivred |
|
13 |
|
chpcl |
|
14 |
12 13
|
syl |
|
15 |
14
|
recnd |
|
16 |
7 10 15
|
adddid |
|
17 |
16
|
sumeq2dv |
|
18 |
|
fveq2 |
|
19 |
|
oveq2 |
|
20 |
19
|
fveq2d |
|
21 |
18 20
|
oveq12d |
|
22 |
21
|
cbvsumv |
|
23 |
|
fzfid |
|
24 |
|
elfznn |
|
25 |
24
|
adantl |
|
26 |
|
vmacl |
|
27 |
25 26
|
syl |
|
28 |
27
|
recnd |
|
29 |
|
elfznn |
|
30 |
29
|
adantl |
|
31 |
|
vmacl |
|
32 |
30 31
|
syl |
|
33 |
32
|
recnd |
|
34 |
23 28 33
|
fsummulc2 |
|
35 |
|
simpl |
|
36 |
35 25
|
nndivred |
|
37 |
|
chpval |
|
38 |
36 37
|
syl |
|
39 |
38
|
oveq2d |
|
40 |
30
|
nncnd |
|
41 |
24
|
ad2antlr |
|
42 |
41
|
nncnd |
|
43 |
41
|
nnne0d |
|
44 |
40 42 43
|
divcan3d |
|
45 |
44
|
fveq2d |
|
46 |
45
|
oveq2d |
|
47 |
46
|
sumeq2dv |
|
48 |
34 39 47
|
3eqtr4d |
|
49 |
48
|
sumeq2dv |
|
50 |
|
fvoveq1 |
|
51 |
50
|
oveq2d |
|
52 |
|
id |
|
53 |
|
ssrab2 |
|
54 |
|
simpr |
|
55 |
53 54
|
sselid |
|
56 |
55 26
|
syl |
|
57 |
|
dvdsdivcl |
|
58 |
4 57
|
sylan |
|
59 |
53 58
|
sselid |
|
60 |
|
vmacl |
|
61 |
59 60
|
syl |
|
62 |
56 61
|
remulcld |
|
63 |
62
|
recnd |
|
64 |
63
|
anasss |
|
65 |
51 52 64
|
dvdsflsumcom |
|
66 |
49 65
|
eqtr4d |
|
67 |
22 66
|
eqtrid |
|
68 |
67
|
oveq2d |
|
69 |
|
fzfid |
|
70 |
7 10
|
mulcld |
|
71 |
7 15
|
mulcld |
|
72 |
69 70 71
|
fsumadd |
|
73 |
|
fzfid |
|
74 |
|
dvdsssfz1 |
|
75 |
4 74
|
syl |
|
76 |
73 75
|
ssfid |
|
77 |
76 62
|
fsumrecl |
|
78 |
77
|
recnd |
|
79 |
69 70 78
|
fsumadd |
|
80 |
68 72 79
|
3eqtr4d |
|
81 |
2 17 80
|
3eqtrd |
|