Metamath Proof Explorer


Theorem pospo

Description: Write a poset structure in terms of the proper-class poset predicate (strict less than version). (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses pospo.b B=BaseK
pospo.l ˙=K
pospo.s <˙=<K
Assertion pospo KVKPoset<˙PoBIB˙

Proof

Step Hyp Ref Expression
1 pospo.b B=BaseK
2 pospo.l ˙=K
3 pospo.s <˙=<K
4 3 pltirr KPosetxB¬x<˙x
5 1 3 plttr KPosetxByBzBx<˙yy<˙zx<˙z
6 4 5 ispod KPoset<˙PoB
7 relres RelIB
8 7 a1i KPosetRelIB
9 opabresid IB=xy|xBy=x
10 9 eqcomi xy|xBy=x=IB
11 10 eleq2i xyxy|xBy=xxyIB
12 opabidw xyxy|xBy=xxBy=x
13 11 12 bitr3i xyIBxBy=x
14 1 2 posref KPosetxBx˙x
15 df-br x˙yxy˙
16 breq2 y=xx˙yx˙x
17 15 16 bitr3id y=xxy˙x˙x
18 14 17 syl5ibrcom KPosetxBy=xxy˙
19 18 expimpd KPosetxBy=xxy˙
20 13 19 biimtrid KPosetxyIBxy˙
21 8 20 relssdv KPosetIB˙
22 6 21 jca KPoset<˙PoBIB˙
23 simpl KV<˙PoBIB˙KV
24 1 a1i KV<˙PoBIB˙B=BaseK
25 2 a1i KV<˙PoBIB˙˙=K
26 equid x=x
27 simpr KV<˙PoBIB˙xBxB
28 resieq xBxBxIBxx=x
29 27 27 28 syl2anc KV<˙PoBIB˙xBxIBxx=x
30 26 29 mpbiri KV<˙PoBIB˙xBxIBx
31 simplrr KV<˙PoBIB˙xBIB˙
32 31 ssbrd KV<˙PoBIB˙xBxIBxx˙x
33 30 32 mpd KV<˙PoBIB˙xBx˙x
34 1 2 3 pleval2i xByBx˙yx<˙yx=y
35 34 3adant1 KV<˙PoBIB˙xByBx˙yx<˙yx=y
36 1 2 3 pleval2i yBxBy˙xy<˙xy=x
37 36 ancoms xByBy˙xy<˙xy=x
38 37 3adant1 KV<˙PoBIB˙xByBy˙xy<˙xy=x
39 simprl KV<˙PoBIB˙<˙PoB
40 po2nr <˙PoBxByB¬x<˙yy<˙x
41 40 3impb <˙PoBxByB¬x<˙yy<˙x
42 39 41 syl3an1 KV<˙PoBIB˙xByB¬x<˙yy<˙x
43 42 pm2.21d KV<˙PoBIB˙xByBx<˙yy<˙xx=y
44 simpl x=yy<˙xx=y
45 44 a1i KV<˙PoBIB˙xByBx=yy<˙xx=y
46 simpr x<˙yy=xy=x
47 46 equcomd x<˙yy=xx=y
48 47 a1i KV<˙PoBIB˙xByBx<˙yy=xx=y
49 simpl x=yy=xx=y
50 49 a1i KV<˙PoBIB˙xByBx=yy=xx=y
51 43 45 48 50 ccased KV<˙PoBIB˙xByBx<˙yx=yy<˙xy=xx=y
52 35 38 51 syl2and KV<˙PoBIB˙xByBx˙yy˙xx=y
53 simpr1 KV<˙PoBIB˙xByBzBxB
54 simpr2 KV<˙PoBIB˙xByBzByB
55 53 54 34 syl2anc KV<˙PoBIB˙xByBzBx˙yx<˙yx=y
56 simpr3 KV<˙PoBIB˙xByBzBzB
57 1 2 3 pleval2i yBzBy˙zy<˙zy=z
58 54 56 57 syl2anc KV<˙PoBIB˙xByBzBy˙zy<˙zy=z
59 potr <˙PoBxByBzBx<˙yy<˙zx<˙z
60 39 59 sylan KV<˙PoBIB˙xByBzBx<˙yy<˙zx<˙z
61 simpll KV<˙PoBIB˙xByBzBKV
62 2 3 pltle KVxBzBx<˙zx˙z
63 61 53 56 62 syl3anc KV<˙PoBIB˙xByBzBx<˙zx˙z
64 60 63 syld KV<˙PoBIB˙xByBzBx<˙yy<˙zx˙z
65 breq1 x=yx<˙zy<˙z
66 65 biimpar x=yy<˙zx<˙z
67 66 63 syl5 KV<˙PoBIB˙xByBzBx=yy<˙zx˙z
68 breq2 y=zx<˙yx<˙z
69 68 biimpac x<˙yy=zx<˙z
70 69 63 syl5 KV<˙PoBIB˙xByBzBx<˙yy=zx˙z
71 53 33 syldan KV<˙PoBIB˙xByBzBx˙x
72 eqtr x=yy=zx=z
73 72 breq2d x=yy=zx˙xx˙z
74 71 73 syl5ibcom KV<˙PoBIB˙xByBzBx=yy=zx˙z
75 64 67 70 74 ccased KV<˙PoBIB˙xByBzBx<˙yx=yy<˙zy=zx˙z
76 55 58 75 syl2and KV<˙PoBIB˙xByBzBx˙yy˙zx˙z
77 23 24 25 33 52 76 isposd KV<˙PoBIB˙KPoset
78 77 ex KV<˙PoBIB˙KPoset
79 22 78 impbid2 KVKPoset<˙PoBIB˙