| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pospo.b |
|
| 2 |
|
pospo.l |
|
| 3 |
|
pospo.s |
|
| 4 |
3
|
pltirr |
|
| 5 |
1 3
|
plttr |
|
| 6 |
4 5
|
ispod |
|
| 7 |
|
relres |
|
| 8 |
7
|
a1i |
|
| 9 |
|
opabresid |
|
| 10 |
9
|
eqcomi |
|
| 11 |
10
|
eleq2i |
|
| 12 |
|
opabidw |
|
| 13 |
11 12
|
bitr3i |
|
| 14 |
1 2
|
posref |
|
| 15 |
|
df-br |
|
| 16 |
|
breq2 |
|
| 17 |
15 16
|
bitr3id |
|
| 18 |
14 17
|
syl5ibrcom |
|
| 19 |
18
|
expimpd |
|
| 20 |
13 19
|
biimtrid |
|
| 21 |
8 20
|
relssdv |
|
| 22 |
6 21
|
jca |
|
| 23 |
|
simpl |
|
| 24 |
1
|
a1i |
|
| 25 |
2
|
a1i |
|
| 26 |
|
equid |
|
| 27 |
|
simpr |
|
| 28 |
|
resieq |
|
| 29 |
27 27 28
|
syl2anc |
|
| 30 |
26 29
|
mpbiri |
|
| 31 |
|
simplrr |
|
| 32 |
31
|
ssbrd |
|
| 33 |
30 32
|
mpd |
|
| 34 |
1 2 3
|
pleval2i |
|
| 35 |
34
|
3adant1 |
|
| 36 |
1 2 3
|
pleval2i |
|
| 37 |
36
|
ancoms |
|
| 38 |
37
|
3adant1 |
|
| 39 |
|
simprl |
|
| 40 |
|
po2nr |
|
| 41 |
40
|
3impb |
|
| 42 |
39 41
|
syl3an1 |
|
| 43 |
42
|
pm2.21d |
|
| 44 |
|
simpl |
|
| 45 |
44
|
a1i |
|
| 46 |
|
simpr |
|
| 47 |
46
|
equcomd |
|
| 48 |
47
|
a1i |
|
| 49 |
|
simpl |
|
| 50 |
49
|
a1i |
|
| 51 |
43 45 48 50
|
ccased |
|
| 52 |
35 38 51
|
syl2and |
|
| 53 |
|
simpr1 |
|
| 54 |
|
simpr2 |
|
| 55 |
53 54 34
|
syl2anc |
|
| 56 |
|
simpr3 |
|
| 57 |
1 2 3
|
pleval2i |
|
| 58 |
54 56 57
|
syl2anc |
|
| 59 |
|
potr |
|
| 60 |
39 59
|
sylan |
|
| 61 |
|
simpll |
|
| 62 |
2 3
|
pltle |
|
| 63 |
61 53 56 62
|
syl3anc |
|
| 64 |
60 63
|
syld |
|
| 65 |
|
breq1 |
|
| 66 |
65
|
biimpar |
|
| 67 |
66 63
|
syl5 |
|
| 68 |
|
breq2 |
|
| 69 |
68
|
biimpac |
|
| 70 |
69 63
|
syl5 |
|
| 71 |
53 33
|
syldan |
|
| 72 |
|
eqtr |
|
| 73 |
72
|
breq2d |
|
| 74 |
71 73
|
syl5ibcom |
|
| 75 |
64 67 70 74
|
ccased |
|
| 76 |
55 58 75
|
syl2and |
|
| 77 |
23 24 25 33 52 76
|
isposd |
|
| 78 |
77
|
ex |
|
| 79 |
22 78
|
impbid2 |
|