Metamath Proof Explorer


Theorem prodmolem3

Description: Lemma for prodmo . (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses prodmo.1 F=kifkAB1
prodmo.2 φkAB
prodmo.3 G=jfj/kB
prodmolem3.4 H=jKj/kB
prodmolem3.5 φMN
prodmolem3.6 φf:1M1-1 ontoA
prodmolem3.7 φK:1N1-1 ontoA
Assertion prodmolem3 φseq1×GM=seq1×HN

Proof

Step Hyp Ref Expression
1 prodmo.1 F=kifkAB1
2 prodmo.2 φkAB
3 prodmo.3 G=jfj/kB
4 prodmolem3.4 H=jKj/kB
5 prodmolem3.5 φMN
6 prodmolem3.6 φf:1M1-1 ontoA
7 prodmolem3.7 φK:1N1-1 ontoA
8 mulcl mjmj
9 8 adantl φmjmj
10 mulcom mjmj=jm
11 10 adantl φmjmj=jm
12 mulass mjzmjz=mjz
13 12 adantl φmjzmjz=mjz
14 5 simpld φM
15 nnuz =1
16 14 15 eleqtrdi φM1
17 ssidd φ
18 f1ocnv f:1M1-1 ontoAf-1:A1-1 onto1M
19 6 18 syl φf-1:A1-1 onto1M
20 f1oco f-1:A1-1 onto1MK:1N1-1 ontoAf-1K:1N1-1 onto1M
21 19 7 20 syl2anc φf-1K:1N1-1 onto1M
22 ovex 1NV
23 22 f1oen f-1K:1N1-1 onto1M1N1M
24 21 23 syl φ1N1M
25 fzfi 1NFin
26 fzfi 1MFin
27 hashen 1NFin1MFin1N=1M1N1M
28 25 26 27 mp2an 1N=1M1N1M
29 24 28 sylibr φ1N=1M
30 5 simprd φN
31 30 nnnn0d φN0
32 hashfz1 N01N=N
33 31 32 syl φ1N=N
34 14 nnnn0d φM0
35 hashfz1 M01M=M
36 34 35 syl φ1M=M
37 29 33 36 3eqtr3rd φM=N
38 37 oveq2d φ1M=1N
39 38 f1oeq2d φf-1K:1M1-1 onto1Mf-1K:1N1-1 onto1M
40 21 39 mpbird φf-1K:1M1-1 onto1M
41 fveq2 j=mfj=fm
42 41 csbeq1d j=mfj/kB=fm/kB
43 elfznn m1Mm
44 43 adantl φm1Mm
45 f1of f:1M1-1 ontoAf:1MA
46 6 45 syl φf:1MA
47 46 ffvelcdmda φm1MfmA
48 2 ralrimiva φkAB
49 48 adantr φm1MkAB
50 nfcsb1v _kfm/kB
51 50 nfel1 kfm/kB
52 csbeq1a k=fmB=fm/kB
53 52 eleq1d k=fmBfm/kB
54 51 53 rspc fmAkABfm/kB
55 47 49 54 sylc φm1Mfm/kB
56 3 42 44 55 fvmptd3 φm1MGm=fm/kB
57 56 55 eqeltrd φm1MGm
58 38 f1oeq2d φK:1M1-1 ontoAK:1N1-1 ontoA
59 7 58 mpbird φK:1M1-1 ontoA
60 f1of K:1M1-1 ontoAK:1MA
61 59 60 syl φK:1MA
62 fvco3 K:1MAi1Mf-1Ki=f-1Ki
63 61 62 sylan φi1Mf-1Ki=f-1Ki
64 63 fveq2d φi1Mff-1Ki=ff-1Ki
65 6 adantr φi1Mf:1M1-1 ontoA
66 61 ffvelcdmda φi1MKiA
67 f1ocnvfv2 f:1M1-1 ontoAKiAff-1Ki=Ki
68 65 66 67 syl2anc φi1Mff-1Ki=Ki
69 64 68 eqtrd φi1Mff-1Ki=Ki
70 69 csbeq1d φi1Mff-1Ki/kB=Ki/kB
71 70 fveq2d φi1MIff-1Ki/kB=IKi/kB
72 f1of f-1K:1M1-1 onto1Mf-1K:1M1M
73 40 72 syl φf-1K:1M1M
74 73 ffvelcdmda φi1Mf-1Ki1M
75 elfznn f-1Ki1Mf-1Ki
76 fveq2 j=f-1Kifj=ff-1Ki
77 76 csbeq1d j=f-1Kifj/kB=ff-1Ki/kB
78 77 3 fvmpti f-1KiGf-1Ki=Iff-1Ki/kB
79 74 75 78 3syl φi1MGf-1Ki=Iff-1Ki/kB
80 elfznn i1Mi
81 80 adantl φi1Mi
82 fveq2 j=iKj=Ki
83 82 csbeq1d j=iKj/kB=Ki/kB
84 83 4 fvmpti iHi=IKi/kB
85 81 84 syl φi1MHi=IKi/kB
86 71 79 85 3eqtr4rd φi1MHi=Gf-1Ki
87 9 11 13 16 17 40 57 86 seqf1o φseq1×HM=seq1×GM
88 37 fveq2d φseq1×HM=seq1×HN
89 87 88 eqtr3d φseq1×GM=seq1×HN