Metamath Proof Explorer


Theorem pythagtrip

Description: Parameterize the Pythagorean triples. If A , B , and C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml . This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014)

Ref Expression
Assertion pythagtrip ABCA2+B2=C2nmkAB=km2n2k2mnC=km2+n2

Proof

Step Hyp Ref Expression
1 divgcdodd AB¬2AAgcdB¬2BAgcdB
2 1 3adant3 ABC¬2AAgcdB¬2BAgcdB
3 2 adantr ABCA2+B2=C2¬2AAgcdB¬2BAgcdB
4 pythagtriplem19 ABCA2+B2=C2¬2AAgcdBnmkA=km2n2B=k2mnC=km2+n2
5 4 3expia ABCA2+B2=C2¬2AAgcdBnmkA=km2n2B=k2mnC=km2+n2
6 simp12 ABCA2+B2=C2¬2BAgcdBB
7 simp11 ABCA2+B2=C2¬2BAgcdBA
8 simp13 ABCA2+B2=C2¬2BAgcdBC
9 nnsqcl AA2
10 9 nncnd AA2
11 10 3ad2ant1 ABCA2
12 nnsqcl BB2
13 12 nncnd BB2
14 13 3ad2ant2 ABCB2
15 11 14 addcomd ABCA2+B2=B2+A2
16 15 eqeq1d ABCA2+B2=C2B2+A2=C2
17 16 biimpa ABCA2+B2=C2B2+A2=C2
18 17 3adant3 ABCA2+B2=C2¬2BAgcdBB2+A2=C2
19 nnz AA
20 19 3ad2ant1 ABCA
21 nnz BB
22 21 3ad2ant2 ABCB
23 22 adantr ABCA2+B2=C2B
24 gcdcom ABAgcdB=BgcdA
25 20 23 24 syl2an2r ABCA2+B2=C2AgcdB=BgcdA
26 25 oveq2d ABCA2+B2=C2BAgcdB=BBgcdA
27 26 breq2d ABCA2+B2=C22BAgcdB2BBgcdA
28 27 notbid ABCA2+B2=C2¬2BAgcdB¬2BBgcdA
29 28 biimp3a ABCA2+B2=C2¬2BAgcdB¬2BBgcdA
30 pythagtriplem19 BACB2+A2=C2¬2BBgcdAnmkB=km2n2A=k2mnC=km2+n2
31 6 7 8 18 29 30 syl311anc ABCA2+B2=C2¬2BAgcdBnmkB=km2n2A=k2mnC=km2+n2
32 31 3expia ABCA2+B2=C2¬2BAgcdBnmkB=km2n2A=k2mnC=km2+n2
33 5 32 orim12d ABCA2+B2=C2¬2AAgcdB¬2BAgcdBnmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
34 3 33 mpd ABCA2+B2=C2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
35 ovex km2n2V
36 ovex k2mnV
37 preq12bg ABkm2n2Vk2mnVAB=km2n2k2mnA=km2n2B=k2mnA=k2mnB=km2n2
38 35 36 37 mpanr12 ABAB=km2n2k2mnA=km2n2B=k2mnA=k2mnB=km2n2
39 38 anbi1d ABAB=km2n2k2mnC=km2+n2A=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2
40 39 rexbidv ABkAB=km2n2k2mnC=km2+n2kA=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2
41 40 2rexbidv ABnmkAB=km2n2k2mnC=km2+n2nmkA=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2
42 andir A=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
43 df-3an A=km2n2B=k2mnC=km2+n2A=km2n2B=k2mnC=km2+n2
44 df-3an A=k2mnB=km2n2C=km2+n2A=k2mnB=km2n2C=km2+n2
45 43 44 orbi12i A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2
46 3ancoma A=k2mnB=km2n2C=km2+n2B=km2n2A=k2mnC=km2+n2
47 46 orbi2i A=km2n2B=k2mnC=km2+n2A=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2
48 42 45 47 3bitr2i A=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2A=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2
49 48 rexbii kA=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2kA=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2
50 49 2rexbii nmkA=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2nmkA=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2
51 r19.43 kA=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2kA=km2n2B=k2mnC=km2+n2kB=km2n2A=k2mnC=km2+n2
52 51 2rexbii nmkA=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2kB=km2n2A=k2mnC=km2+n2
53 r19.43 mkA=km2n2B=k2mnC=km2+n2kB=km2n2A=k2mnC=km2+n2mkA=km2n2B=k2mnC=km2+n2mkB=km2n2A=k2mnC=km2+n2
54 53 rexbii nmkA=km2n2B=k2mnC=km2+n2kB=km2n2A=k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2mkB=km2n2A=k2mnC=km2+n2
55 r19.43 nmkA=km2n2B=k2mnC=km2+n2mkB=km2n2A=k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
56 54 55 bitri nmkA=km2n2B=k2mnC=km2+n2kB=km2n2A=k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
57 52 56 bitri nmkA=km2n2B=k2mnC=km2+n2B=km2n2A=k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
58 50 57 bitri nmkA=km2n2B=k2mnA=k2mnB=km2n2C=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
59 41 58 bitrdi ABnmkAB=km2n2k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
60 59 3adant3 ABCnmkAB=km2n2k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
61 60 adantr ABCA2+B2=C2nmkAB=km2n2k2mnC=km2+n2nmkA=km2n2B=k2mnC=km2+n2nmkB=km2n2A=k2mnC=km2+n2
62 34 61 mpbird ABCA2+B2=C2nmkAB=km2n2k2mnC=km2+n2
63 62 ex ABCA2+B2=C2nmkAB=km2n2k2mnC=km2+n2
64 pythagtriplem2 ABnmkAB=km2n2k2mnC=km2+n2A2+B2=C2
65 64 3adant3 ABCnmkAB=km2n2k2mnC=km2+n2A2+B2=C2
66 63 65 impbid ABCA2+B2=C2nmkAB=km2n2k2mnC=km2+n2