Description: Parameterize the Pythagorean triples. If A , B , and C are naturals, then they obey the Pythagorean triple formula iff they are parameterized by three naturals. This proof follows the Isabelle proof at http://afp.sourceforge.net/entries/Fermat3_4.shtml . This is Metamath 100 proof #23. (Contributed by Scott Fenton, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pythagtrip | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divgcdodd | |
|
2 | 1 | 3adant3 | |
3 | 2 | adantr | |
4 | pythagtriplem19 | |
|
5 | 4 | 3expia | |
6 | simp12 | |
|
7 | simp11 | |
|
8 | simp13 | |
|
9 | nnsqcl | |
|
10 | 9 | nncnd | |
11 | 10 | 3ad2ant1 | |
12 | nnsqcl | |
|
13 | 12 | nncnd | |
14 | 13 | 3ad2ant2 | |
15 | 11 14 | addcomd | |
16 | 15 | eqeq1d | |
17 | 16 | biimpa | |
18 | 17 | 3adant3 | |
19 | nnz | |
|
20 | 19 | 3ad2ant1 | |
21 | nnz | |
|
22 | 21 | 3ad2ant2 | |
23 | 22 | adantr | |
24 | gcdcom | |
|
25 | 20 23 24 | syl2an2r | |
26 | 25 | oveq2d | |
27 | 26 | breq2d | |
28 | 27 | notbid | |
29 | 28 | biimp3a | |
30 | pythagtriplem19 | |
|
31 | 6 7 8 18 29 30 | syl311anc | |
32 | 31 | 3expia | |
33 | 5 32 | orim12d | |
34 | 3 33 | mpd | |
35 | ovex | |
|
36 | ovex | |
|
37 | preq12bg | |
|
38 | 35 36 37 | mpanr12 | |
39 | 38 | anbi1d | |
40 | 39 | rexbidv | |
41 | 40 | 2rexbidv | |
42 | andir | |
|
43 | df-3an | |
|
44 | df-3an | |
|
45 | 43 44 | orbi12i | |
46 | 3ancoma | |
|
47 | 46 | orbi2i | |
48 | 42 45 47 | 3bitr2i | |
49 | 48 | rexbii | |
50 | 49 | 2rexbii | |
51 | r19.43 | |
|
52 | 51 | 2rexbii | |
53 | r19.43 | |
|
54 | 53 | rexbii | |
55 | r19.43 | |
|
56 | 54 55 | bitri | |
57 | 52 56 | bitri | |
58 | 50 57 | bitri | |
59 | 41 58 | bitrdi | |
60 | 59 | 3adant3 | |
61 | 60 | adantr | |
62 | 34 61 | mpbird | |
63 | 62 | ex | |
64 | pythagtriplem2 | |
|
65 | 64 | 3adant3 | |
66 | 63 65 | impbid | |