Metamath Proof Explorer


Theorem pythagtriplem13

Description: Lemma for pythagtrip . Show that N (which will eventually be closely related to the n in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypothesis pythagtriplem13.1 N = C + B C B 2
Assertion pythagtriplem13 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A N

Proof

Step Hyp Ref Expression
1 pythagtriplem13.1 N = C + B C B 2
2 pythagtriplem9 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
3 2 nnzd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
4 simp3r A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A ¬ 2 A
5 2z 2
6 simp3 A B C C
7 simp2 A B C B
8 6 7 nnaddcld A B C C + B
9 8 nnzd A B C C + B
10 9 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
11 nnz A A
12 11 3ad2ant1 A B C A
13 12 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A A
14 dvdsgcdb 2 C + B A 2 C + B 2 A 2 C + B gcd A
15 5 10 13 14 mp3an2i A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C + B 2 A 2 C + B gcd A
16 15 biimpar A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C + B gcd A 2 C + B 2 A
17 16 simprd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C + B gcd A 2 A
18 4 17 mtand A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A ¬ 2 C + B gcd A
19 pythagtriplem7 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B = C + B gcd A
20 19 breq2d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C + B 2 C + B gcd A
21 18 20 mtbird A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A ¬ 2 C + B
22 pythagtriplem8 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B
23 22 nnzd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B
24 nnz C C
25 24 3ad2ant3 A B C C
26 nnz B B
27 26 3ad2ant2 A B C B
28 25 27 zsubcld A B C C B
29 28 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B
30 dvdsgcdb 2 C B A 2 C B 2 A 2 C B gcd A
31 5 29 13 30 mp3an2i A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C B 2 A 2 C B gcd A
32 31 biimpar A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C B gcd A 2 C B 2 A
33 32 simprd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C B gcd A 2 A
34 4 33 mtand A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A ¬ 2 C B gcd A
35 pythagtriplem6 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B = C B gcd A
36 35 breq2d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C B 2 C B gcd A
37 34 36 mtbird A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A ¬ 2 C B
38 omoe C + B ¬ 2 C + B C B ¬ 2 C B 2 C + B C B
39 3 21 23 37 38 syl22anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C + B C B
40 28 zred A B C C B
41 40 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B
42 simp13 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C
43 42 nnred A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C
44 8 nnred A B C C + B
45 44 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
46 nnrp B B +
47 46 3ad2ant2 A B C B +
48 47 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A B +
49 43 48 ltsubrpd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B < C
50 nngt0 B 0 < B
51 50 3ad2ant2 A B C 0 < B
52 51 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < B
53 simp12 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A B
54 53 nnred A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A B
55 54 43 ltaddposd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < B C < C + B
56 52 55 mpbid A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C < C + B
57 41 43 45 49 56 lttrd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B < C + B
58 pythagtriplem10 A B C A 2 + B 2 = C 2 0 < C B
59 58 3adant3 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C B
60 0re 0
61 ltle 0 C B 0 < C B 0 C B
62 60 61 mpan C B 0 < C B 0 C B
63 41 59 62 sylc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 C B
64 nngt0 C 0 < C
65 64 3ad2ant3 A B C 0 < C
66 65 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C
67 43 54 66 52 addgt0d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C + B
68 ltle 0 C + B 0 < C + B 0 C + B
69 60 68 mpan C + B 0 < C + B 0 C + B
70 45 67 69 sylc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 C + B
71 41 63 45 70 sqrtltd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B < C + B C B < C + B
72 57 71 mpbid A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B < C + B
73 nnsub C B C + B C B < C + B C + B C B
74 22 2 73 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B < C + B C + B C B
75 72 74 mpbid A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B C B
76 75 nnzd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B C B
77 evend2 C + B C B 2 C + B C B C + B C B 2
78 76 77 syl A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 C + B C B C + B C B 2
79 39 78 mpbid A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B C B 2
80 75 nngt0d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C + B C B
81 75 nnred A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B C B
82 halfpos2 C + B C B 0 < C + B C B 0 < C + B C B 2
83 81 82 syl A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C + B C B 0 < C + B C B 2
84 80 83 mpbid A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C + B C B 2
85 elnnz C + B C B 2 C + B C B 2 0 < C + B C B 2
86 79 84 85 sylanbrc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B C B 2
87 1 86 eqeltrid A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A N