Metamath Proof Explorer


Theorem pythagtriplem16

Description: Lemma for pythagtrip . Show the relationship between M , N , and B . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses pythagtriplem15.1 M = C + B + C B 2
pythagtriplem15.2 N = C + B C B 2
Assertion pythagtriplem16 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A B = 2 M N

Proof

Step Hyp Ref Expression
1 pythagtriplem15.1 M = C + B + C B 2
2 pythagtriplem15.2 N = C + B C B 2
3 1 2 oveq12i M N = C + B + C B 2 C + B C B 2
4 nncn C C
5 nncn B B
6 addcl C B C + B
7 4 5 6 syl2anr B C C + B
8 7 sqrtcld B C C + B
9 subcl C B C B
10 4 5 9 syl2anr B C C B
11 10 sqrtcld B C C B
12 addcl C + B C B C + B + C B
13 8 11 12 syl2anc B C C + B + C B
14 13 3adant1 A B C C + B + C B
15 14 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B
16 subcl C + B C B C + B C B
17 8 11 16 syl2anc B C C + B C B
18 17 3adant1 A B C C + B C B
19 18 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B C B
20 2cnne0 2 2 0
21 divmuldiv C + B + C B C + B C B 2 2 0 2 2 0 C + B + C B 2 C + B C B 2 = C + B + C B C + B C B 2 2
22 20 20 21 mpanr12 C + B + C B C + B C B C + B + C B 2 C + B C B 2 = C + B + C B C + B C B 2 2
23 15 19 22 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B 2 C + B C B 2 = C + B + C B C + B C B 2 2
24 13 17 mulcld B C C + B + C B C + B C B
25 24 3adant1 A B C C + B + C B C + B C B
26 25 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B C + B C B
27 divdiv1 C + B + C B C + B C B 2 2 0 2 2 0 C + B + C B C + B C B 2 2 = C + B + C B C + B C B 2 2
28 20 20 27 mp3an23 C + B + C B C + B C B C + B + C B C + B C B 2 2 = C + B + C B C + B C B 2 2
29 26 28 syl A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B C + B C B 2 2 = C + B + C B C + B C B 2 2
30 23 29 eqtr4d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B 2 C + B C B 2 = C + B + C B C + B C B 2 2
31 nnre C C
32 nnre B B
33 readdcl C B C + B
34 31 32 33 syl2anr B C C + B
35 34 3adant1 A B C C + B
36 35 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
37 31 adantl B C C
38 32 adantr B C B
39 nngt0 C 0 < C
40 39 adantl B C 0 < C
41 nngt0 B 0 < B
42 41 adantr B C 0 < B
43 37 38 40 42 addgt0d B C 0 < C + B
44 0re 0
45 ltle 0 C + B 0 < C + B 0 C + B
46 44 45 mpan C + B 0 < C + B 0 C + B
47 34 43 46 sylc B C 0 C + B
48 47 3adant1 A B C 0 C + B
49 48 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 C + B
50 resqrtth C + B 0 C + B C + B 2 = C + B
51 36 49 50 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B 2 = C + B
52 resubcl C B C B
53 31 32 52 syl2anr B C C B
54 53 3adant1 A B C C B
55 54 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B
56 pythagtriplem10 A B C A 2 + B 2 = C 2 0 < C B
57 56 3adant3 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 < C B
58 ltle 0 C B 0 < C B 0 C B
59 44 58 mpan C B 0 < C B 0 C B
60 55 57 59 sylc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 0 C B
61 resqrtth C B 0 C B C B 2 = C B
62 55 60 61 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B 2 = C B
63 51 62 oveq12d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B 2 C B 2 = C + B - C B
64 63 oveq1d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B 2 C B 2 2 = C + B - C B 2
65 simp12 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A B
66 simp13 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C
67 65 66 8 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B
68 65 66 11 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C B
69 subsq C + B C B C + B 2 C B 2 = C + B + C B C + B C B
70 67 68 69 syl2anc A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B 2 C B 2 = C + B + C B C + B C B
71 70 oveq1d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B 2 C B 2 2 = C + B + C B C + B C B 2
72 pnncan C B B C + B - C B = B + B
73 72 3anidm23 C B C + B - C B = B + B
74 2times B 2 B = B + B
75 74 adantl C B 2 B = B + B
76 73 75 eqtr4d C B C + B - C B = 2 B
77 4 5 76 syl2anr B C C + B - C B = 2 B
78 77 3adant1 A B C C + B - C B = 2 B
79 78 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B - C B = 2 B
80 79 oveq1d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B - C B 2 = 2 B 2
81 2cn 2
82 2ne0 2 0
83 divcan3 B 2 2 0 2 B 2 = B
84 81 82 83 mp3an23 B 2 B 2 = B
85 65 5 84 3syl A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 B 2 = B
86 80 85 eqtrd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B - C B 2 = B
87 64 71 86 3eqtr3d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B C + B C B 2 = B
88 87 oveq1d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B C + B C B 2 2 = B 2
89 30 88 eqtrd A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A C + B + C B 2 C + B C B 2 = B 2
90 3 89 syl5eq A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A M N = B 2
91 90 oveq2d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 M N = 2 B 2
92 divcan2 B 2 2 0 2 B 2 = B
93 81 82 92 mp3an23 B 2 B 2 = B
94 5 93 syl B 2 B 2 = B
95 94 3ad2ant2 A B C 2 B 2 = B
96 95 3ad2ant1 A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A 2 B 2 = B
97 91 96 eqtr2d A B C A 2 + B 2 = C 2 A gcd B = 1 ¬ 2 A B = 2 M N