| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pzriprng.r |
|
| 2 |
|
pzriprng.i |
|
| 3 |
|
pzriprng.j |
|
| 4 |
1
|
pzriprnglem2 |
|
| 5 |
4
|
eleq2i |
|
| 6 |
|
elxp2 |
|
| 7 |
5 6
|
bitri |
|
| 8 |
1 2
|
pzriprnglem3 |
|
| 9 |
|
simpll |
|
| 10 |
|
simpr |
|
| 11 |
9 10
|
zmulcld |
|
| 12 |
|
zcn |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
mul01d |
|
| 16 |
|
ovex |
|
| 17 |
16
|
elsn |
|
| 18 |
15 17
|
sylibr |
|
| 19 |
11 18
|
opelxpd |
|
| 20 |
10 9
|
zmulcld |
|
| 21 |
14
|
mul02d |
|
| 22 |
|
ovex |
|
| 23 |
22
|
elsn |
|
| 24 |
21 23
|
sylibr |
|
| 25 |
20 24
|
opelxpd |
|
| 26 |
|
zringbas |
|
| 27 |
|
zringring |
|
| 28 |
27
|
a1i |
|
| 29 |
|
simplr |
|
| 30 |
|
0zd |
|
| 31 |
29 30
|
zmulcld |
|
| 32 |
|
zringmulr |
|
| 33 |
|
eqid |
|
| 34 |
1 26 26 28 28 9 29 10 30 11 31 32 32 33
|
xpsmul |
|
| 35 |
34
|
eleq1d |
|
| 36 |
|
simpl |
|
| 37 |
|
simprl |
|
| 38 |
36 37
|
zmulcld |
|
| 39 |
38
|
ancoms |
|
| 40 |
|
0zd |
|
| 41 |
|
simprr |
|
| 42 |
40 41
|
zmulcld |
|
| 43 |
42
|
ancoms |
|
| 44 |
1 26 26 28 28 10 30 9 29 39 43 32 32 33
|
xpsmul |
|
| 45 |
44
|
eleq1d |
|
| 46 |
35 45
|
anbi12d |
|
| 47 |
19 25 46
|
mpbir2and |
|
| 48 |
47
|
adantr |
|
| 49 |
|
oveq12 |
|
| 50 |
49
|
ancoms |
|
| 51 |
50
|
adantl |
|
| 52 |
2
|
a1i |
|
| 53 |
51 52
|
eleq12d |
|
| 54 |
|
oveq12 |
|
| 55 |
54
|
adantl |
|
| 56 |
55 52
|
eleq12d |
|
| 57 |
53 56
|
anbi12d |
|
| 58 |
48 57
|
mpbird |
|
| 59 |
58
|
exp32 |
|
| 60 |
59
|
rexlimdva |
|
| 61 |
60
|
com23 |
|
| 62 |
61
|
rexlimivv |
|
| 63 |
62
|
imp |
|
| 64 |
7 8 63
|
syl2anb |
|
| 65 |
64
|
rgen2 |
|
| 66 |
1
|
pzriprnglem1 |
|
| 67 |
1 2
|
pzriprnglem4 |
|
| 68 |
|
eqid |
|
| 69 |
|
eqid |
|
| 70 |
68 69 33
|
df2idl2rng |
|
| 71 |
66 67 70
|
mp2an |
|
| 72 |
65 71
|
mpbir |
|