| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|
| 2 |
|
elxr |
|
| 3 |
|
qbtwnre |
|
| 4 |
3
|
3expia |
|
| 5 |
|
simpl |
|
| 6 |
|
peano2re |
|
| 7 |
6
|
adantr |
|
| 8 |
|
ltp1 |
|
| 9 |
8
|
adantr |
|
| 10 |
|
qbtwnre |
|
| 11 |
5 7 9 10
|
syl3anc |
|
| 12 |
|
qre |
|
| 13 |
12
|
ltpnfd |
|
| 14 |
13
|
adantl |
|
| 15 |
|
simplr |
|
| 16 |
14 15
|
breqtrrd |
|
| 17 |
16
|
a1d |
|
| 18 |
17
|
anim2d |
|
| 19 |
18
|
reximdva |
|
| 20 |
11 19
|
mpd |
|
| 21 |
20
|
a1d |
|
| 22 |
|
rexr |
|
| 23 |
|
breq2 |
|
| 24 |
23
|
adantl |
|
| 25 |
|
nltmnf |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
pm2.21d |
|
| 28 |
24 27
|
sylbid |
|
| 29 |
22 28
|
sylan |
|
| 30 |
4 21 29
|
3jaodan |
|
| 31 |
2 30
|
sylan2b |
|
| 32 |
|
breq1 |
|
| 33 |
32
|
adantr |
|
| 34 |
|
pnfnlt |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
pm2.21d |
|
| 37 |
33 36
|
sylbid |
|
| 38 |
|
peano2rem |
|
| 39 |
38
|
adantl |
|
| 40 |
|
simpr |
|
| 41 |
|
ltm1 |
|
| 42 |
41
|
adantl |
|
| 43 |
|
qbtwnre |
|
| 44 |
39 40 42 43
|
syl3anc |
|
| 45 |
|
simpll |
|
| 46 |
12
|
adantl |
|
| 47 |
46
|
mnfltd |
|
| 48 |
45 47
|
eqbrtrd |
|
| 49 |
48
|
a1d |
|
| 50 |
49
|
anim1d |
|
| 51 |
50
|
reximdva |
|
| 52 |
44 51
|
mpd |
|
| 53 |
52
|
a1d |
|
| 54 |
|
1re |
|
| 55 |
|
mnflt |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
|
breq1 |
|
| 58 |
56 57
|
mpbiri |
|
| 59 |
|
ltpnf |
|
| 60 |
54 59
|
ax-mp |
|
| 61 |
|
breq2 |
|
| 62 |
60 61
|
mpbiri |
|
| 63 |
|
1z |
|
| 64 |
|
zq |
|
| 65 |
63 64
|
ax-mp |
|
| 66 |
|
breq2 |
|
| 67 |
|
breq1 |
|
| 68 |
66 67
|
anbi12d |
|
| 69 |
68
|
rspcev |
|
| 70 |
65 69
|
mpan |
|
| 71 |
58 62 70
|
syl2an |
|
| 72 |
71
|
a1d |
|
| 73 |
|
3mix3 |
|
| 74 |
73 1
|
sylibr |
|
| 75 |
74 28
|
sylan |
|
| 76 |
53 72 75
|
3jaodan |
|
| 77 |
2 76
|
sylan2b |
|
| 78 |
31 37 77
|
3jaoian |
|
| 79 |
1 78
|
sylanb |
|
| 80 |
79
|
3impia |
|