Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | plydiv.pl | |
|
plydiv.tm | |
||
plydiv.rc | |
||
plydiv.m1 | |
||
plydiv.f | |
||
plydiv.g | |
||
plydiv.z | |
||
quotlem.8 | |
||
Assertion | quotlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plydiv.pl | |
|
2 | plydiv.tm | |
|
3 | plydiv.rc | |
|
4 | plydiv.m1 | |
|
5 | plydiv.f | |
|
6 | plydiv.g | |
|
7 | plydiv.z | |
|
8 | quotlem.8 | |
|
9 | eqid | |
|
10 | 9 | quotval | |
11 | 5 6 7 10 | syl3anc | |
12 | 1 2 3 4 5 6 7 9 | plydivalg | |
13 | reurex | |
|
14 | 12 13 | syl | |
15 | addcl | |
|
16 | 15 | adantl | |
17 | mulcl | |
|
18 | 17 | adantl | |
19 | reccl | |
|
20 | 19 | adantl | |
21 | neg1cn | |
|
22 | 21 | a1i | |
23 | plyssc | |
|
24 | 23 5 | sselid | |
25 | 23 6 | sselid | |
26 | 16 18 20 22 24 25 7 9 | plydivalg | |
27 | id | |
|
28 | 27 | rgenw | |
29 | riotass2 | |
|
30 | 23 28 29 | mpanl12 | |
31 | 14 26 30 | syl2anc | |
32 | 11 31 | eqtr4d | |
33 | riotacl2 | |
|
34 | 12 33 | syl | |
35 | 32 34 | eqeltrd | |
36 | oveq2 | |
|
37 | 36 | oveq2d | |
38 | 37 8 | eqtr4di | |
39 | 38 | eqeq1d | |
40 | 38 | fveq2d | |
41 | 40 | breq1d | |
42 | 39 41 | orbi12d | |
43 | 42 | elrab | |
44 | 35 43 | sylib | |