Metamath Proof Explorer


Theorem quotlem

Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses plydiv.pl φxSySx+yS
plydiv.tm φxSySxyS
plydiv.rc φxSx01xS
plydiv.m1 φ1S
plydiv.f φFPolyS
plydiv.g φGPolyS
plydiv.z φG0𝑝
quotlem.8 R=FfG×fFquotG
Assertion quotlem φFquotGPolySR=0𝑝degR<degG

Proof

Step Hyp Ref Expression
1 plydiv.pl φxSySx+yS
2 plydiv.tm φxSySxyS
3 plydiv.rc φxSx01xS
4 plydiv.m1 φ1S
5 plydiv.f φFPolyS
6 plydiv.g φGPolyS
7 plydiv.z φG0𝑝
8 quotlem.8 R=FfG×fFquotG
9 eqid FfG×fq=FfG×fq
10 9 quotval FPolySGPolySG0𝑝FquotG=ιqPoly|FfG×fq=0𝑝degFfG×fq<degG
11 5 6 7 10 syl3anc φFquotG=ιqPoly|FfG×fq=0𝑝degFfG×fq<degG
12 1 2 3 4 5 6 7 9 plydivalg φ∃!qPolySFfG×fq=0𝑝degFfG×fq<degG
13 reurex ∃!qPolySFfG×fq=0𝑝degFfG×fq<degGqPolySFfG×fq=0𝑝degFfG×fq<degG
14 12 13 syl φqPolySFfG×fq=0𝑝degFfG×fq<degG
15 addcl xyx+y
16 15 adantl φxyx+y
17 mulcl xyxy
18 17 adantl φxyxy
19 reccl xx01x
20 19 adantl φxx01x
21 neg1cn 1
22 21 a1i φ1
23 plyssc PolySPoly
24 23 5 sselid φFPoly
25 23 6 sselid φGPoly
26 16 18 20 22 24 25 7 9 plydivalg φ∃!qPolyFfG×fq=0𝑝degFfG×fq<degG
27 id FfG×fq=0𝑝degFfG×fq<degGFfG×fq=0𝑝degFfG×fq<degG
28 27 rgenw qPolySFfG×fq=0𝑝degFfG×fq<degGFfG×fq=0𝑝degFfG×fq<degG
29 riotass2 PolySPolyqPolySFfG×fq=0𝑝degFfG×fq<degGFfG×fq=0𝑝degFfG×fq<degGqPolySFfG×fq=0𝑝degFfG×fq<degG∃!qPolyFfG×fq=0𝑝degFfG×fq<degGιqPolyS|FfG×fq=0𝑝degFfG×fq<degG=ιqPoly|FfG×fq=0𝑝degFfG×fq<degG
30 23 28 29 mpanl12 qPolySFfG×fq=0𝑝degFfG×fq<degG∃!qPolyFfG×fq=0𝑝degFfG×fq<degGιqPolyS|FfG×fq=0𝑝degFfG×fq<degG=ιqPoly|FfG×fq=0𝑝degFfG×fq<degG
31 14 26 30 syl2anc φιqPolyS|FfG×fq=0𝑝degFfG×fq<degG=ιqPoly|FfG×fq=0𝑝degFfG×fq<degG
32 11 31 eqtr4d φFquotG=ιqPolyS|FfG×fq=0𝑝degFfG×fq<degG
33 riotacl2 ∃!qPolySFfG×fq=0𝑝degFfG×fq<degGιqPolyS|FfG×fq=0𝑝degFfG×fq<degGqPolyS|FfG×fq=0𝑝degFfG×fq<degG
34 12 33 syl φιqPolyS|FfG×fq=0𝑝degFfG×fq<degGqPolyS|FfG×fq=0𝑝degFfG×fq<degG
35 32 34 eqeltrd φFquotGqPolyS|FfG×fq=0𝑝degFfG×fq<degG
36 oveq2 q=FquotGG×fq=G×fFquotG
37 36 oveq2d q=FquotGFfG×fq=FfG×fFquotG
38 37 8 eqtr4di q=FquotGFfG×fq=R
39 38 eqeq1d q=FquotGFfG×fq=0𝑝R=0𝑝
40 38 fveq2d q=FquotGdegFfG×fq=degR
41 40 breq1d q=FquotGdegFfG×fq<degGdegR<degG
42 39 41 orbi12d q=FquotGFfG×fq=0𝑝degFfG×fq<degGR=0𝑝degR<degG
43 42 elrab FquotGqPolyS|FfG×fq=0𝑝degFfG×fq<degGFquotGPolySR=0𝑝degR<degG
44 35 43 sylib φFquotGPolySR=0𝑝degR<degG