Step |
Hyp |
Ref |
Expression |
1 |
|
rdgssun.1 |
|
2 |
|
rdgssun.2 |
|
3 |
|
nfsbc1v |
|
4 |
|
0ex |
|
5 |
|
rzal |
|
6 |
|
sbceq1a |
|
7 |
5 6
|
mpbid |
|
8 |
3 4 7
|
vtoclef |
|
9 |
|
vex |
|
10 |
9
|
elsuc |
|
11 |
|
ssun1 |
|
12 |
|
fvex |
|
13 |
2
|
csbex |
|
14 |
12 13
|
unex |
|
15 |
|
nfcv |
|
16 |
|
nfcv |
|
17 |
|
nfmpt1 |
|
18 |
1 17
|
nfcxfr |
|
19 |
18 15
|
nfrdg |
|
20 |
19 16
|
nffv |
|
21 |
20
|
nfcsb1 |
|
22 |
20 21
|
nfun |
|
23 |
|
rdgeq1 |
|
24 |
1 23
|
ax-mp |
|
25 |
|
id |
|
26 |
|
csbeq1a |
|
27 |
25 26
|
uneq12d |
|
28 |
15 16 22 24 27
|
rdgsucmptf |
|
29 |
14 28
|
mpan2 |
|
30 |
11 29
|
sseqtrrid |
|
31 |
|
sstr2 |
|
32 |
30 31
|
syl5com |
|
33 |
32
|
imim2d |
|
34 |
33
|
imp |
|
35 |
|
fveq2 |
|
36 |
35
|
sseq1d |
|
37 |
30 36
|
syl5ibrcom |
|
38 |
37
|
adantr |
|
39 |
34 38
|
jaod |
|
40 |
10 39
|
syl5bi |
|
41 |
40
|
ex |
|
42 |
41
|
ralimdv2 |
|
43 |
|
df-sbc |
|
44 |
|
vex |
|
45 |
44
|
sucex |
|
46 |
|
fveq2 |
|
47 |
46
|
sseq2d |
|
48 |
47
|
raleqbi1dv |
|
49 |
|
fveq2 |
|
50 |
49
|
sseq2d |
|
51 |
50
|
raleqbi1dv |
|
52 |
51
|
cbvabv |
|
53 |
45 48 52
|
elab2 |
|
54 |
43 53
|
bitri |
|
55 |
42 54
|
syl6ibr |
|
56 |
|
ssiun2 |
|
57 |
56
|
adantl |
|
58 |
|
vex |
|
59 |
|
rdglim2a |
|
60 |
58 59
|
mpan |
|
61 |
60
|
adantr |
|
62 |
57 61
|
sseqtrrd |
|
63 |
62
|
ralrimiva |
|
64 |
|
df-sbc |
|
65 |
52
|
eleq2i |
|
66 |
64 65
|
bitri |
|
67 |
|
abid |
|
68 |
66 67
|
bitri |
|
69 |
63 68
|
sylibr |
|
70 |
69
|
a1d |
|
71 |
8 55 70
|
tfindes |
|
72 |
|
rsp |
|
73 |
71 72
|
syl |
|
74 |
|
eleq1 |
|
75 |
74
|
adantl |
|
76 |
|
eleq12 |
|
77 |
|
fveq2 |
|
78 |
77
|
adantr |
|
79 |
|
fveq2 |
|
80 |
79
|
adantl |
|
81 |
78 80
|
sseq12d |
|
82 |
76 81
|
imbi12d |
|
83 |
75 82
|
imbi12d |
|
84 |
73 83
|
mpbii |
|
85 |
84
|
ex |
|
86 |
85
|
vtocleg |
|
87 |
86
|
com12 |
|
88 |
87
|
vtocleg |
|
89 |
88
|
pm2.43b |
|
90 |
89
|
pm2.43b |
|
91 |
90
|
imp |
|