Metamath Proof Explorer


Theorem recosf1o

Description: The cosine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014)

Ref Expression
Assertion recosf1o cos0π:0π1-1 onto11

Proof

Step Hyp Ref Expression
1 cosf cos:
2 ffn cos:cosFn
3 1 2 ax-mp cosFn
4 0re 0
5 pire π
6 iccssre 0π0π
7 4 5 6 mp2an 0π
8 ax-resscn
9 7 8 sstri 0π
10 fnssres cosFn0πcos0πFn0π
11 3 9 10 mp2an cos0πFn0π
12 fvres x0πcos0πx=cosx
13 7 sseli x0πx
14 cosbnd2 xcosx11
15 13 14 syl x0πcosx11
16 12 15 eqeltrd x0πcos0πx11
17 16 rgen x0πcos0πx11
18 ffnfv cos0π:0π11cos0πFn0πx0πcos0πx11
19 11 17 18 mpbir2an cos0π:0π11
20 fvres y0πcos0πy=cosy
21 12 20 eqeqan12d x0πy0πcos0πx=cos0πycosx=cosy
22 cos11 x0πy0πx=ycosx=cosy
23 22 biimprd x0πy0πcosx=cosyx=y
24 21 23 sylbid x0πy0πcos0πx=cos0πyx=y
25 24 rgen2 x0πy0πcos0πx=cos0πyx=y
26 dff13 cos0π:0π1-111cos0π:0π11x0πy0πcos0πx=cos0πyx=y
27 19 25 26 mpbir2an cos0π:0π1-111
28 4 a1i x110
29 5 a1i x11π
30 neg1rr 1
31 1re 1
32 30 31 elicc2i x11x1xx1
33 32 simp1bi x11x
34 pipos 0<π
35 34 a1i x110<π
36 9 a1i x110π
37 coscn cos:cn
38 37 a1i x11cos:cn
39 7 sseli z0πz
40 39 recoscld z0πcosz
41 40 adantl x11z0πcosz
42 cospi cosπ=1
43 32 simp2bi x111x
44 42 43 eqbrtrid x11cosπx
45 32 simp3bi x11x1
46 cos0 cos0=1
47 45 46 breqtrrdi x11xcos0
48 44 47 jca x11cosπxxcos0
49 28 29 33 35 36 38 41 48 ivthle2 x11y0πcosy=x
50 eqcom x=cos0πycos0πy=x
51 20 eqeq1d y0πcos0πy=xcosy=x
52 50 51 bitrid y0πx=cos0πycosy=x
53 52 rexbiia y0πx=cos0πyy0πcosy=x
54 49 53 sylibr x11y0πx=cos0πy
55 54 rgen x11y0πx=cos0πy
56 dffo3 cos0π:0πonto11cos0π:0π11x11y0πx=cos0πy
57 19 55 56 mpbir2an cos0π:0πonto11
58 df-f1o cos0π:0π1-1 onto11cos0π:0π1-111cos0π:0πonto11
59 27 57 58 mpbir2an cos0π:0π1-1 onto11