Metamath Proof Explorer


Theorem refsumcn

Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses refsumcn.1 xφ
refsumcn.2 K=topGenran.
refsumcn.3 φJTopOnX
refsumcn.4 φAFin
refsumcn.5 φkAxXBJCnK
Assertion refsumcn φxXkABJCnK

Proof

Step Hyp Ref Expression
1 refsumcn.1 xφ
2 refsumcn.2 K=topGenran.
3 refsumcn.3 φJTopOnX
4 refsumcn.4 φAFin
5 refsumcn.5 φkAxXBJCnK
6 eqid TopOpenfld=TopOpenfld
7 6 tgioo2 topGenran.=TopOpenfld𝑡
8 2 7 eqtri K=TopOpenfld𝑡
9 8 oveq2i JCnK=JCnTopOpenfld𝑡
10 5 9 eleqtrdi φkAxXBJCnTopOpenfld𝑡
11 6 cnfldtopon TopOpenfldTopOn
12 11 a1i φkATopOpenfldTopOn
13 3 adantr φkAJTopOnX
14 retopon topGenran.TopOn
15 2 14 eqeltri KTopOn
16 15 a1i φkAKTopOn
17 cnf2 JTopOnXKTopOnxXBJCnKxXB:X
18 13 16 5 17 syl3anc φkAxXB:X
19 18 frnd φkAranxXB
20 ax-resscn
21 20 a1i φkA
22 cnrest2 TopOpenfldTopOnranxXBxXBJCnTopOpenfldxXBJCnTopOpenfld𝑡
23 12 19 21 22 syl3anc φkAxXBJCnTopOpenfldxXBJCnTopOpenfld𝑡
24 10 23 mpbird φkAxXBJCnTopOpenfld
25 6 3 4 24 fsumcnf φxXkABJCnTopOpenfld
26 11 a1i φTopOpenfldTopOn
27 4 adantr φxXAFin
28 simpll φxXkAφ
29 simpr φxXkAkA
30 28 29 jca φxXkAφkA
31 simplr φxXkAxX
32 eqid xXB=xXB
33 32 fmpt xXBxXB:X
34 18 33 sylibr φkAxXB
35 rsp xXBxXB
36 34 35 syl φkAxXB
37 30 31 36 sylc φxXkAB
38 27 37 fsumrecl φxXkAB
39 38 ex φxXkAB
40 1 39 ralrimi φxXkAB
41 eqid xXkAB=xXkAB
42 41 fnmpt xXkABxXkABFnX
43 40 42 syl φxXkABFnX
44 nfcv _xX
45 nfcv _xy
46 nfmpt1 _xxXkAB
47 44 45 46 fvelrnbf xXkABFnXyranxXkABxXxXkABx=y
48 43 47 syl φyranxXkABxXxXkABx=y
49 48 biimpa φyranxXkABxXxXkABx=y
50 46 nfrn _xranxXkAB
51 50 nfcri xyranxXkAB
52 1 51 nfan xφyranxXkAB
53 nfcv _x
54 53 nfcri xy
55 simpr φxXxX
56 55 38 jca φxXxXkAB
57 41 fvmpt2 xXkABxXkABx=kAB
58 56 57 syl φxXxXkABx=kAB
59 58 3adant3 φxXxXkABx=yxXkABx=kAB
60 simp3 φxXxXkABx=yxXkABx=y
61 59 60 eqtr3d φxXxXkABx=ykAB=y
62 38 3adant3 φxXxXkABx=ykAB
63 61 62 eqeltrrd φxXxXkABx=yy
64 63 3adant1r φyranxXkABxXxXkABx=yy
65 64 3exp φyranxXkABxXxXkABx=yy
66 52 54 65 rexlimd φyranxXkABxXxXkABx=yy
67 49 66 mpd φyranxXkABy
68 67 ex φyranxXkABy
69 68 ssrdv φranxXkAB
70 20 a1i φ
71 cnrest2 TopOpenfldTopOnranxXkABxXkABJCnTopOpenfldxXkABJCnTopOpenfld𝑡
72 26 69 70 71 syl3anc φxXkABJCnTopOpenfldxXkABJCnTopOpenfld𝑡
73 25 72 mpbid φxXkABJCnTopOpenfld𝑡
74 73 9 eleqtrrdi φxXkABJCnK