Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | refsumcn.1 | |
|
refsumcn.2 | |
||
refsumcn.3 | |
||
refsumcn.4 | |
||
refsumcn.5 | |
||
Assertion | refsumcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refsumcn.1 | |
|
2 | refsumcn.2 | |
|
3 | refsumcn.3 | |
|
4 | refsumcn.4 | |
|
5 | refsumcn.5 | |
|
6 | eqid | |
|
7 | 6 | tgioo2 | |
8 | 2 7 | eqtri | |
9 | 8 | oveq2i | |
10 | 5 9 | eleqtrdi | |
11 | 6 | cnfldtopon | |
12 | 11 | a1i | |
13 | 3 | adantr | |
14 | retopon | |
|
15 | 2 14 | eqeltri | |
16 | 15 | a1i | |
17 | cnf2 | |
|
18 | 13 16 5 17 | syl3anc | |
19 | 18 | frnd | |
20 | ax-resscn | |
|
21 | 20 | a1i | |
22 | cnrest2 | |
|
23 | 12 19 21 22 | syl3anc | |
24 | 10 23 | mpbird | |
25 | 6 3 4 24 | fsumcnf | |
26 | 11 | a1i | |
27 | 4 | adantr | |
28 | simpll | |
|
29 | simpr | |
|
30 | 28 29 | jca | |
31 | simplr | |
|
32 | eqid | |
|
33 | 32 | fmpt | |
34 | 18 33 | sylibr | |
35 | rsp | |
|
36 | 34 35 | syl | |
37 | 30 31 36 | sylc | |
38 | 27 37 | fsumrecl | |
39 | 38 | ex | |
40 | 1 39 | ralrimi | |
41 | eqid | |
|
42 | 41 | fnmpt | |
43 | 40 42 | syl | |
44 | nfcv | |
|
45 | nfcv | |
|
46 | nfmpt1 | |
|
47 | 44 45 46 | fvelrnbf | |
48 | 43 47 | syl | |
49 | 48 | biimpa | |
50 | 46 | nfrn | |
51 | 50 | nfcri | |
52 | 1 51 | nfan | |
53 | nfcv | |
|
54 | 53 | nfcri | |
55 | simpr | |
|
56 | 55 38 | jca | |
57 | 41 | fvmpt2 | |
58 | 56 57 | syl | |
59 | 58 | 3adant3 | |
60 | simp3 | |
|
61 | 59 60 | eqtr3d | |
62 | 38 | 3adant3 | |
63 | 61 62 | eqeltrrd | |
64 | 63 | 3adant1r | |
65 | 64 | 3exp | |
66 | 52 54 65 | rexlimd | |
67 | 49 66 | mpd | |
68 | 67 | ex | |
69 | 68 | ssrdv | |
70 | 20 | a1i | |
71 | cnrest2 | |
|
72 | 26 69 70 71 | syl3anc | |
73 | 25 72 | mpbid | |
74 | 73 9 | eleqtrrdi | |