Metamath Proof Explorer


Theorem relogbreexp

Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of Cohen4 p. 361. (Contributed by AV, 9-Jun-2020)

Ref Expression
Assertion relogbreexp B01C+ElogBCE=ElogBC

Proof

Step Hyp Ref Expression
1 logcxp C+ElogCE=ElogC
2 1 3adant1 B01C+ElogCE=ElogC
3 2 oveq1d B01C+ElogCElogB=ElogClogB
4 recn EE
5 4 3ad2ant3 B01C+EE
6 rpcn C+C
7 rpne0 C+C0
8 6 7 logcld C+logC
9 8 3ad2ant2 B01C+ElogC
10 eldifi B01B
11 eldifpr B01BB0B1
12 11 simp2bi B01B0
13 10 12 logcld B01logB
14 logccne0 BB0B1logB0
15 11 14 sylbi B01logB0
16 13 15 jca B01logBlogB0
17 16 3ad2ant1 B01C+ElogBlogB0
18 divass ElogClogBlogB0ElogClogB=ElogClogB
19 5 9 17 18 syl3anc B01C+EElogClogB=ElogClogB
20 3 19 eqtrd B01C+ElogCElogB=ElogClogB
21 simp1 B01C+EB01
22 6 adantr C+EC
23 4 adantl C+EE
24 22 23 cxpcld C+ECE
25 7 adantr C+EC0
26 22 25 23 cxpne0d C+ECE0
27 eldifsn CE0CECE0
28 24 26 27 sylanbrc C+ECE0
29 28 3adant1 B01C+ECE0
30 logbval B01CE0logBCE=logCElogB
31 21 29 30 syl2anc B01C+ElogBCE=logCElogB
32 rpcndif0 C+C0
33 32 anim2i B01C+B01C0
34 33 3adant3 B01C+EB01C0
35 logbval B01C0logBC=logClogB
36 34 35 syl B01C+ElogBC=logClogB
37 36 oveq2d B01C+EElogBC=ElogClogB
38 20 31 37 3eqtr4d B01C+ElogBCE=ElogBC