Metamath Proof Explorer


Theorem relogbreexp

Description: Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of Cohen4 p. 361. (Contributed by AV, 9-Jun-2020)

Ref Expression
Assertion relogbreexp B 0 1 C + E log B C E = E log B C

Proof

Step Hyp Ref Expression
1 logcxp C + E log C E = E log C
2 1 3adant1 B 0 1 C + E log C E = E log C
3 2 oveq1d B 0 1 C + E log C E log B = E log C log B
4 recn E E
5 4 3ad2ant3 B 0 1 C + E E
6 rpcn C + C
7 rpne0 C + C 0
8 6 7 logcld C + log C
9 8 3ad2ant2 B 0 1 C + E log C
10 eldifi B 0 1 B
11 eldifpr B 0 1 B B 0 B 1
12 11 simp2bi B 0 1 B 0
13 10 12 logcld B 0 1 log B
14 logccne0 B B 0 B 1 log B 0
15 11 14 sylbi B 0 1 log B 0
16 13 15 jca B 0 1 log B log B 0
17 16 3ad2ant1 B 0 1 C + E log B log B 0
18 divass E log C log B log B 0 E log C log B = E log C log B
19 5 9 17 18 syl3anc B 0 1 C + E E log C log B = E log C log B
20 3 19 eqtrd B 0 1 C + E log C E log B = E log C log B
21 simp1 B 0 1 C + E B 0 1
22 6 adantr C + E C
23 4 adantl C + E E
24 22 23 cxpcld C + E C E
25 7 adantr C + E C 0
26 22 25 23 cxpne0d C + E C E 0
27 eldifsn C E 0 C E C E 0
28 24 26 27 sylanbrc C + E C E 0
29 28 3adant1 B 0 1 C + E C E 0
30 logbval B 0 1 C E 0 log B C E = log C E log B
31 21 29 30 syl2anc B 0 1 C + E log B C E = log C E log B
32 rpcndif0 C + C 0
33 32 anim2i B 0 1 C + B 0 1 C 0
34 33 3adant3 B 0 1 C + E B 0 1 C 0
35 logbval B 0 1 C 0 log B C = log C log B
36 34 35 syl B 0 1 C + E log B C = log C log B
37 36 oveq2d B 0 1 C + E E log B C = E log C log B
38 20 31 37 3eqtr4d B 0 1 C + E log B C E = E log B C