Metamath Proof Explorer


Theorem relop

Description: A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008) A relation is a class of ordered pairs, so the fact that an ordered pair may sometimes be itself a relation is an "accident" depending on the specific encoding of ordered pairs as classes (in set.mm, the Kuratowski encoding). A more meaningful statement is relsnopg , as funsng is to funop . (New usage is discouraged.)

Ref Expression
Hypotheses relop.1 AV
relop.2 BV
Assertion relop RelABxyA=xB=xy

Proof

Step Hyp Ref Expression
1 relop.1 AV
2 relop.2 BV
3 df-rel RelABABV×V
4 dfss2 ABV×VzzABzV×V
5 1 2 elop zABz=Az=AB
6 elvv zV×Vxyz=xy
7 5 6 imbi12i zABzV×Vz=Az=ABxyz=xy
8 jaob z=Az=ABxyz=xyz=Axyz=xyz=ABxyz=xy
9 7 8 bitri zABzV×Vz=Axyz=xyz=ABxyz=xy
10 9 albii zzABzV×Vzz=Axyz=xyz=ABxyz=xy
11 19.26 zz=Axyz=xyz=ABxyz=xyzz=Axyz=xyzz=ABxyz=xy
12 10 11 bitri zzABzV×Vzz=Axyz=xyzz=ABxyz=xy
13 4 12 bitri ABV×Vzz=Axyz=xyzz=ABxyz=xy
14 snex AV
15 eqeq1 z=Az=AA=A
16 eqeq1 z=Az=xyA=xy
17 eqcom A=xyxy=A
18 vex xV
19 vex yV
20 18 19 opeqsn xy=Ax=yA=x
21 17 20 bitri A=xyx=yA=x
22 16 21 bitrdi z=Az=xyx=yA=x
23 22 2exbidv z=Axyz=xyxyx=yA=x
24 15 23 imbi12d z=Az=Axyz=xyA=Axyx=yA=x
25 14 24 spcv zz=Axyz=xyA=Axyx=yA=x
26 sneq w=xw=x
27 26 eqeq2d w=xA=wA=x
28 27 cbvexvw wA=wxA=x
29 ax6evr yx=y
30 19.41v yx=yA=xyx=yA=x
31 29 30 mpbiran yx=yA=xA=x
32 31 exbii xyx=yA=xxA=x
33 eqid A=A
34 33 a1bi xyx=yA=xA=Axyx=yA=x
35 28 32 34 3bitr2ri A=Axyx=yA=xwA=w
36 25 35 sylib zz=Axyz=xywA=w
37 eqid AB=AB
38 prex ABV
39 eqeq1 z=ABz=ABAB=AB
40 eqeq1 z=ABz=xyAB=xy
41 40 2exbidv z=ABxyz=xyxyAB=xy
42 39 41 imbi12d z=ABz=ABxyz=xyAB=ABxyAB=xy
43 38 42 spcv zz=ABxyz=xyAB=ABxyAB=xy
44 37 43 mpi zz=ABxyz=xyxyAB=xy
45 eqcom AB=xyxy=AB
46 18 19 1 2 opeqpr xy=ABA=xB=xyA=xyB=x
47 45 46 bitri AB=xyA=xB=xyA=xyB=x
48 idd A=wA=xB=xyA=xB=xy
49 eqtr2 A=xyA=wxy=w
50 18 19 preqsn xy=wx=yy=w
51 50 simplbi xy=wx=y
52 49 51 syl A=xyA=wx=y
53 dfsn2 x=xx
54 preq2 x=yxx=xy
55 53 54 eqtr2id x=yxy=x
56 55 eqeq2d x=yA=xyA=x
57 53 54 eqtrid x=yx=xy
58 57 eqeq2d x=yB=xB=xy
59 56 58 anbi12d x=yA=xyB=xA=xB=xy
60 59 biimpd x=yA=xyB=xA=xB=xy
61 60 expd x=yA=xyB=xA=xB=xy
62 61 com12 A=xyx=yB=xA=xB=xy
63 62 adantr A=xyA=wx=yB=xA=xB=xy
64 52 63 mpd A=xyA=wB=xA=xB=xy
65 64 expcom A=wA=xyB=xA=xB=xy
66 65 impd A=wA=xyB=xA=xB=xy
67 48 66 jaod A=wA=xB=xyA=xyB=xA=xB=xy
68 47 67 biimtrid A=wAB=xyA=xB=xy
69 68 2eximdv A=wxyAB=xyxyA=xB=xy
70 69 exlimiv wA=wxyAB=xyxyA=xB=xy
71 70 imp wA=wxyAB=xyxyA=xB=xy
72 36 44 71 syl2an zz=Axyz=xyzz=ABxyz=xyxyA=xB=xy
73 13 72 sylbi ABV×VxyA=xB=xy
74 simpr A=xz=Az=A
75 equid x=x
76 75 jctl A=xx=xA=x
77 18 18 opeqsn xx=Ax=xA=x
78 76 77 sylibr A=xxx=A
79 78 adantr A=xz=Axx=A
80 74 79 eqtr4d A=xz=Az=xx
81 opeq12 w=xv=xwv=xx
82 81 eqeq2d w=xv=xz=wvz=xx
83 18 18 82 spc2ev z=xxwvz=wv
84 80 83 syl A=xz=Awvz=wv
85 84 adantlr A=xB=xyz=Awvz=wv
86 preq12 A=xB=xyAB=xxy
87 86 eqeq2d A=xB=xyz=ABz=xxy
88 87 biimpa A=xB=xyz=ABz=xxy
89 18 19 dfop xy=xxy
90 88 89 eqtr4di A=xB=xyz=ABz=xy
91 opeq12 w=xv=ywv=xy
92 91 eqeq2d w=xv=yz=wvz=xy
93 18 19 92 spc2ev z=xywvz=wv
94 90 93 syl A=xB=xyz=ABwvz=wv
95 85 94 jaodan A=xB=xyz=Az=ABwvz=wv
96 95 ex A=xB=xyz=Az=ABwvz=wv
97 elvv zV×Vwvz=wv
98 96 5 97 3imtr4g A=xB=xyzABzV×V
99 98 ssrdv A=xB=xyABV×V
100 99 exlimivv xyA=xB=xyABV×V
101 73 100 impbii ABV×VxyA=xB=xy
102 3 101 bitri RelABxyA=xB=xy