Metamath Proof Explorer


Theorem rescabs

Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 9-Nov-2024)

Ref Expression
Hypotheses rescabs.c φCV
rescabs.h φHFnS×S
rescabs.j φJFnT×T
rescabs.s φSW
rescabs.t φTS
Assertion rescabs φCcatHcatJ=CcatJ

Proof

Step Hyp Ref Expression
1 rescabs.c φCV
2 rescabs.h φHFnS×S
3 rescabs.j φJFnT×T
4 rescabs.s φSW
5 rescabs.t φTS
6 eqid C𝑠SsSetHomndxHcatJ=C𝑠SsSetHomndxHcatJ
7 ovexd φC𝑠SsSetHomndxHV
8 4 5 ssexd φTV
9 6 7 8 3 rescval2 φC𝑠SsSetHomndxHcatJ=C𝑠SsSetHomndxH𝑠TsSetHomndxJ
10 simpr φBaseC𝑠STBaseC𝑠ST
11 ovexd φBaseC𝑠STC𝑠SsSetHomndxHV
12 8 adantr φBaseC𝑠STTV
13 eqid C𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxH𝑠T
14 baseid Base=SlotBasendx
15 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
16 15 simp1i BasendxHomndx
17 14 16 setsnid BaseC𝑠S=BaseC𝑠SsSetHomndxH
18 13 17 ressid2 BaseC𝑠STC𝑠SsSetHomndxHVTVC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxH
19 10 11 12 18 syl3anc φBaseC𝑠STC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxH
20 19 oveq1d φBaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠SsSetHomndxHsSetHomndxJ
21 ovex C𝑠SV
22 8 8 xpexd φT×TV
23 3 22 fnexd φJV
24 23 adantr φBaseC𝑠STJV
25 setsabs C𝑠SVJVC𝑠SsSetHomndxHsSetHomndxJ=C𝑠SsSetHomndxJ
26 21 24 25 sylancr φBaseC𝑠STC𝑠SsSetHomndxHsSetHomndxJ=C𝑠SsSetHomndxJ
27 eqid C𝑠S=C𝑠S
28 eqid BaseC=BaseC
29 27 28 ressbas SWSBaseC=BaseC𝑠S
30 4 29 syl φSBaseC=BaseC𝑠S
31 30 sseq1d φSBaseCTBaseC𝑠ST
32 31 biimpar φBaseC𝑠STSBaseCT
33 inss2 SBaseCBaseC
34 33 a1i φBaseC𝑠STSBaseCBaseC
35 32 34 ssind φBaseC𝑠STSBaseCTBaseC
36 5 adantr φBaseC𝑠STTS
37 36 ssrind φBaseC𝑠STTBaseCSBaseC
38 35 37 eqssd φBaseC𝑠STSBaseC=TBaseC
39 38 oveq2d φBaseC𝑠STC𝑠SBaseC=C𝑠TBaseC
40 4 adantr φBaseC𝑠STSW
41 28 ressinbas SWC𝑠S=C𝑠SBaseC
42 40 41 syl φBaseC𝑠STC𝑠S=C𝑠SBaseC
43 28 ressinbas TVC𝑠T=C𝑠TBaseC
44 12 43 syl φBaseC𝑠STC𝑠T=C𝑠TBaseC
45 39 42 44 3eqtr4d φBaseC𝑠STC𝑠S=C𝑠T
46 45 oveq1d φBaseC𝑠STC𝑠SsSetHomndxJ=C𝑠TsSetHomndxJ
47 20 26 46 3eqtrd φBaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
48 simpr φ¬BaseC𝑠ST¬BaseC𝑠ST
49 ovexd φ¬BaseC𝑠STC𝑠SsSetHomndxHV
50 8 adantr φ¬BaseC𝑠STTV
51 13 17 ressval2 ¬BaseC𝑠STC𝑠SsSetHomndxHVTVC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S
52 48 49 50 51 syl3anc φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠T=C𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S
53 ovexd φ¬BaseC𝑠STC𝑠SV
54 16 necomi HomndxBasendx
55 54 a1i φ¬BaseC𝑠STHomndxBasendx
56 4 4 xpexd φS×SV
57 2 56 fnexd φHV
58 57 adantr φ¬BaseC𝑠STHV
59 fvex BaseC𝑠SV
60 59 inex2 TBaseC𝑠SV
61 60 a1i φ¬BaseC𝑠STTBaseC𝑠SV
62 fvex HomndxV
63 fvex BasendxV
64 62 63 setscom C𝑠SVHomndxBasendxHVTBaseC𝑠SVC𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S=C𝑠SsSetBasendxTBaseC𝑠SsSetHomndxH
65 53 55 58 61 64 syl22anc φ¬BaseC𝑠STC𝑠SsSetHomndxHsSetBasendxTBaseC𝑠S=C𝑠SsSetBasendxTBaseC𝑠SsSetHomndxH
66 eqid C𝑠S𝑠T=C𝑠S𝑠T
67 eqid BaseC𝑠S=BaseC𝑠S
68 66 67 ressval2 ¬BaseC𝑠STC𝑠SVTVC𝑠S𝑠T=C𝑠SsSetBasendxTBaseC𝑠S
69 48 53 50 68 syl3anc φ¬BaseC𝑠STC𝑠S𝑠T=C𝑠SsSetBasendxTBaseC𝑠S
70 5 adantr φ¬BaseC𝑠STTS
71 ressabs SWTSC𝑠S𝑠T=C𝑠T
72 4 70 71 syl2an2r φ¬BaseC𝑠STC𝑠S𝑠T=C𝑠T
73 69 72 eqtr3d φ¬BaseC𝑠STC𝑠SsSetBasendxTBaseC𝑠S=C𝑠T
74 73 oveq1d φ¬BaseC𝑠STC𝑠SsSetBasendxTBaseC𝑠SsSetHomndxH=C𝑠TsSetHomndxH
75 52 65 74 3eqtrd φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠T=C𝑠TsSetHomndxH
76 75 oveq1d φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxHsSetHomndxJ
77 ovex C𝑠TV
78 23 adantr φ¬BaseC𝑠STJV
79 setsabs C𝑠TVJVC𝑠TsSetHomndxHsSetHomndxJ=C𝑠TsSetHomndxJ
80 77 78 79 sylancr φ¬BaseC𝑠STC𝑠TsSetHomndxHsSetHomndxJ=C𝑠TsSetHomndxJ
81 76 80 eqtrd φ¬BaseC𝑠STC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
82 47 81 pm2.61dan φC𝑠SsSetHomndxH𝑠TsSetHomndxJ=C𝑠TsSetHomndxJ
83 9 82 eqtrd φC𝑠SsSetHomndxHcatJ=C𝑠TsSetHomndxJ
84 eqid CcatH=CcatH
85 84 1 4 2 rescval2 φCcatH=C𝑠SsSetHomndxH
86 85 oveq1d φCcatHcatJ=C𝑠SsSetHomndxHcatJ
87 eqid CcatJ=CcatJ
88 87 1 8 3 rescval2 φCcatJ=C𝑠TsSetHomndxJ
89 83 86 88 3eqtr4d φCcatHcatJ=CcatJ