Metamath Proof Explorer


Theorem resghm

Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypothesis resghm.u U=S𝑠X
Assertion resghm FSGrpHomTXSubGrpSFXUGrpHomT

Proof

Step Hyp Ref Expression
1 resghm.u U=S𝑠X
2 eqid BaseU=BaseU
3 eqid BaseT=BaseT
4 eqid +U=+U
5 eqid +T=+T
6 1 subggrp XSubGrpSUGrp
7 6 adantl FSGrpHomTXSubGrpSUGrp
8 ghmgrp2 FSGrpHomTTGrp
9 8 adantr FSGrpHomTXSubGrpSTGrp
10 eqid BaseS=BaseS
11 10 3 ghmf FSGrpHomTF:BaseSBaseT
12 10 subgss XSubGrpSXBaseS
13 fssres F:BaseSBaseTXBaseSFX:XBaseT
14 11 12 13 syl2an FSGrpHomTXSubGrpSFX:XBaseT
15 12 adantl FSGrpHomTXSubGrpSXBaseS
16 1 10 ressbas2 XBaseSX=BaseU
17 15 16 syl FSGrpHomTXSubGrpSX=BaseU
18 17 feq2d FSGrpHomTXSubGrpSFX:XBaseTFX:BaseUBaseT
19 14 18 mpbid FSGrpHomTXSubGrpSFX:BaseUBaseT
20 eleq2 X=BaseUaXaBaseU
21 eleq2 X=BaseUbXbBaseU
22 20 21 anbi12d X=BaseUaXbXaBaseUbBaseU
23 17 22 syl FSGrpHomTXSubGrpSaXbXaBaseUbBaseU
24 23 biimpar FSGrpHomTXSubGrpSaBaseUbBaseUaXbX
25 simpll FSGrpHomTXSubGrpSaXbXFSGrpHomT
26 15 sselda FSGrpHomTXSubGrpSaXaBaseS
27 26 adantrr FSGrpHomTXSubGrpSaXbXaBaseS
28 15 sselda FSGrpHomTXSubGrpSbXbBaseS
29 28 adantrl FSGrpHomTXSubGrpSaXbXbBaseS
30 eqid +S=+S
31 10 30 5 ghmlin FSGrpHomTaBaseSbBaseSFa+Sb=Fa+TFb
32 25 27 29 31 syl3anc FSGrpHomTXSubGrpSaXbXFa+Sb=Fa+TFb
33 1 30 ressplusg XSubGrpS+S=+U
34 33 ad2antlr FSGrpHomTXSubGrpSaXbX+S=+U
35 34 oveqd FSGrpHomTXSubGrpSaXbXa+Sb=a+Ub
36 35 fveq2d FSGrpHomTXSubGrpSaXbXFXa+Sb=FXa+Ub
37 30 subgcl XSubGrpSaXbXa+SbX
38 37 3expb XSubGrpSaXbXa+SbX
39 38 adantll FSGrpHomTXSubGrpSaXbXa+SbX
40 39 fvresd FSGrpHomTXSubGrpSaXbXFXa+Sb=Fa+Sb
41 36 40 eqtr3d FSGrpHomTXSubGrpSaXbXFXa+Ub=Fa+Sb
42 fvres aXFXa=Fa
43 fvres bXFXb=Fb
44 42 43 oveqan12d aXbXFXa+TFXb=Fa+TFb
45 44 adantl FSGrpHomTXSubGrpSaXbXFXa+TFXb=Fa+TFb
46 32 41 45 3eqtr4d FSGrpHomTXSubGrpSaXbXFXa+Ub=FXa+TFXb
47 24 46 syldan FSGrpHomTXSubGrpSaBaseUbBaseUFXa+Ub=FXa+TFXb
48 2 3 4 5 7 9 19 47 isghmd FSGrpHomTXSubGrpSFXUGrpHomT