| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resghm.u |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 |  | eqid |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 | subggrp |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 |  | ghmgrp2 |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 3 | ghmf |  | 
						
							| 12 | 10 | subgss |  | 
						
							| 13 |  | fssres |  | 
						
							| 14 | 11 12 13 | syl2an |  | 
						
							| 15 | 12 | adantl |  | 
						
							| 16 | 1 10 | ressbas2 |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 17 | feq2d |  | 
						
							| 19 | 14 18 | mpbid |  | 
						
							| 20 |  | eleq2 |  | 
						
							| 21 |  | eleq2 |  | 
						
							| 22 | 20 21 | anbi12d |  | 
						
							| 23 | 17 22 | syl |  | 
						
							| 24 | 23 | biimpar |  | 
						
							| 25 |  | simpll |  | 
						
							| 26 | 15 | sselda |  | 
						
							| 27 | 26 | adantrr |  | 
						
							| 28 | 15 | sselda |  | 
						
							| 29 | 28 | adantrl |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 10 30 5 | ghmlin |  | 
						
							| 32 | 25 27 29 31 | syl3anc |  | 
						
							| 33 | 1 30 | ressplusg |  | 
						
							| 34 | 33 | ad2antlr |  | 
						
							| 35 | 34 | oveqd |  | 
						
							| 36 | 35 | fveq2d |  | 
						
							| 37 | 30 | subgcl |  | 
						
							| 38 | 37 | 3expb |  | 
						
							| 39 | 38 | adantll |  | 
						
							| 40 | 39 | fvresd |  | 
						
							| 41 | 36 40 | eqtr3d |  | 
						
							| 42 |  | fvres |  | 
						
							| 43 |  | fvres |  | 
						
							| 44 | 42 43 | oveqan12d |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 | 32 41 45 | 3eqtr4d |  | 
						
							| 47 | 24 46 | syldan |  | 
						
							| 48 | 2 3 4 5 7 9 19 47 | isghmd |  |