Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | resghm.u | |
|
Assertion | resghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resghm.u | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 1 | subggrp | |
7 | 6 | adantl | |
8 | ghmgrp2 | |
|
9 | 8 | adantr | |
10 | eqid | |
|
11 | 10 3 | ghmf | |
12 | 10 | subgss | |
13 | fssres | |
|
14 | 11 12 13 | syl2an | |
15 | 12 | adantl | |
16 | 1 10 | ressbas2 | |
17 | 15 16 | syl | |
18 | 17 | feq2d | |
19 | 14 18 | mpbid | |
20 | eleq2 | |
|
21 | eleq2 | |
|
22 | 20 21 | anbi12d | |
23 | 17 22 | syl | |
24 | 23 | biimpar | |
25 | simpll | |
|
26 | 15 | sselda | |
27 | 26 | adantrr | |
28 | 15 | sselda | |
29 | 28 | adantrl | |
30 | eqid | |
|
31 | 10 30 5 | ghmlin | |
32 | 25 27 29 31 | syl3anc | |
33 | 1 30 | ressplusg | |
34 | 33 | ad2antlr | |
35 | 34 | oveqd | |
36 | 35 | fveq2d | |
37 | 30 | subgcl | |
38 | 37 | 3expb | |
39 | 38 | adantll | |
40 | 39 | fvresd | |
41 | 36 40 | eqtr3d | |
42 | fvres | |
|
43 | fvres | |
|
44 | 42 43 | oveqan12d | |
45 | 44 | adantl | |
46 | 32 41 45 | 3eqtr4d | |
47 | 24 46 | syldan | |
48 | 2 3 4 5 7 9 19 47 | isghmd | |