Description: Lemma for rhmmpl . A subproof of psrmulcllem . (Contributed by SN, 8-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rhmmpllem1.d | |
|
rhmmpllem1.r | |
||
rhmmpllem1.x | |
||
rhmmpllem1.y | |
||
Assertion | rhmmpllem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmmpllem1.d | |
|
2 | rhmmpllem1.r | |
|
3 | rhmmpllem1.x | |
|
4 | rhmmpllem1.y | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 | ringcmnd | |
8 | 7 | adantr | |
9 | 1 | psrbaglefi | |
10 | 9 | adantl | |
11 | eqid | |
|
12 | 2 | ad2antrr | |
13 | 3 | ad2antrr | |
14 | breq1 | |
|
15 | 14 | elrab | |
16 | 15 | biimpi | |
17 | 16 | adantl | |
18 | 17 | simpld | |
19 | 13 18 | ffvelcdmd | |
20 | 4 | ad2antrr | |
21 | simplr | |
|
22 | 1 | psrbagf | |
23 | 18 22 | syl | |
24 | 17 | simprd | |
25 | 1 | psrbagcon | |
26 | 21 23 24 25 | syl3anc | |
27 | 26 | simpld | |
28 | 20 27 | ffvelcdmd | |
29 | 5 11 12 19 28 | ringcld | |
30 | 29 | fmpttd | |
31 | 1 2 3 4 | rhmmpllem1 | |
32 | 5 6 8 10 30 31 | gsumcl | |