Metamath Proof Explorer


Theorem rhmmpllem2

Description: Lemma for rhmmpl . A subproof of psrmulcllem . (Contributed by SN, 8-Feb-2025)

Ref Expression
Hypotheses rhmmpllem1.d D=f0I|f-1Fin
rhmmpllem1.r φRRing
rhmmpllem1.x φX:DBaseR
rhmmpllem1.y φY:DBaseR
Assertion rhmmpllem2 φkDRxyD|yfkXxRYkfxBaseR

Proof

Step Hyp Ref Expression
1 rhmmpllem1.d D=f0I|f-1Fin
2 rhmmpllem1.r φRRing
3 rhmmpllem1.x φX:DBaseR
4 rhmmpllem1.y φY:DBaseR
5 eqid BaseR=BaseR
6 eqid 0R=0R
7 2 ringcmnd φRCMnd
8 7 adantr φkDRCMnd
9 1 psrbaglefi kDyD|yfkFin
10 9 adantl φkDyD|yfkFin
11 eqid R=R
12 2 ad2antrr φkDxyD|yfkRRing
13 3 ad2antrr φkDxyD|yfkX:DBaseR
14 breq1 y=xyfkxfk
15 14 elrab xyD|yfkxDxfk
16 15 biimpi xyD|yfkxDxfk
17 16 adantl φkDxyD|yfkxDxfk
18 17 simpld φkDxyD|yfkxD
19 13 18 ffvelcdmd φkDxyD|yfkXxBaseR
20 4 ad2antrr φkDxyD|yfkY:DBaseR
21 simplr φkDxyD|yfkkD
22 1 psrbagf xDx:I0
23 18 22 syl φkDxyD|yfkx:I0
24 17 simprd φkDxyD|yfkxfk
25 1 psrbagcon kDx:I0xfkkfxDkfxfk
26 21 23 24 25 syl3anc φkDxyD|yfkkfxDkfxfk
27 26 simpld φkDxyD|yfkkfxD
28 20 27 ffvelcdmd φkDxyD|yfkYkfxBaseR
29 5 11 12 19 28 ringcld φkDxyD|yfkXxRYkfxBaseR
30 29 fmpttd φkDxyD|yfkXxRYkfx:yD|yfkBaseR
31 1 2 3 4 rhmmpllem1 φkDfinSupp0RxyD|yfkXxRYkfx
32 5 6 8 10 30 31 gsumcl φkDRxyD|yfkXxRYkfxBaseR