Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rmfsuppf2.r | |
|
rmfsupp2.m | |
||
rmfsupp2.v | |
||
rmfsupp2.c | |
||
rmfsupp2.a | |
||
rmfsupp2.1 | |
||
Assertion | rmfsupp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmfsuppf2.r | |
|
2 | rmfsupp2.m | |
|
3 | rmfsupp2.v | |
|
4 | rmfsupp2.c | |
|
5 | rmfsupp2.a | |
|
6 | rmfsupp2.1 | |
|
7 | funmpt | |
|
8 | 7 | a1i | |
9 | 3 | mptexd | |
10 | ringgrp | |
|
11 | eqid | |
|
12 | 1 11 | grpidcl | |
13 | 2 10 12 | 3syl | |
14 | suppval1 | |
|
15 | 8 9 13 14 | syl3anc | |
16 | ovex | |
|
17 | eqid | |
|
18 | 16 17 | dmmpti | |
19 | 18 | a1i | |
20 | ovex | |
|
21 | nfcv | |
|
22 | nfcv | |
|
23 | nfcv | |
|
24 | nfcsb1v | |
|
25 | 22 23 24 | nfov | |
26 | fveq2 | |
|
27 | csbeq1a | |
|
28 | 26 27 | oveq12d | |
29 | 21 25 28 17 | fvmptf | |
30 | 20 29 | mpan2 | |
31 | 30 18 | eleq2s | |
32 | 31 | adantl | |
33 | 32 | neeq1d | |
34 | 19 33 | rabeqbidva | |
35 | 5 | fdmd | |
36 | 35 | rabeqdv | |
37 | 5 | ffund | |
38 | 1 | fvexi | |
39 | 38 | a1i | |
40 | 39 3 | elmapd | |
41 | 5 40 | mpbird | |
42 | suppval1 | |
|
43 | 37 41 13 42 | syl3anc | |
44 | 6 | fsuppimpd | |
45 | 43 44 | eqeltrrd | |
46 | 36 45 | eqeltrrd | |
47 | simpr | |
|
48 | 47 | oveq1d | |
49 | 2 | ad2antrr | |
50 | simplr | |
|
51 | 4 | ralrimiva | |
52 | 51 | ad2antrr | |
53 | rspcsbela | |
|
54 | 50 52 53 | syl2anc | |
55 | eqid | |
|
56 | 1 55 11 | ringlz | |
57 | 49 54 56 | syl2anc | |
58 | 48 57 | eqtrd | |
59 | 58 | ex | |
60 | 59 | necon3d | |
61 | 60 | ss2rabdv | |
62 | ssfi | |
|
63 | 46 61 62 | syl2anc | |
64 | 34 63 | eqeltrd | |
65 | 15 64 | eqeltrd | |
66 | isfsupp | |
|
67 | 9 13 66 | syl2anc | |
68 | 8 65 67 | mpbir2and | |