Metamath Proof Explorer


Theorem rmfsupp2

Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023)

Ref Expression
Hypotheses rmfsuppf2.r R = Base M
rmfsupp2.m φ M Ring
rmfsupp2.v φ V X
rmfsupp2.c φ v V C R
rmfsupp2.a φ A : V R
rmfsupp2.1 φ finSupp 0 M A
Assertion rmfsupp2 φ finSupp 0 M v V A v M C

Proof

Step Hyp Ref Expression
1 rmfsuppf2.r R = Base M
2 rmfsupp2.m φ M Ring
3 rmfsupp2.v φ V X
4 rmfsupp2.c φ v V C R
5 rmfsupp2.a φ A : V R
6 rmfsupp2.1 φ finSupp 0 M A
7 funmpt Fun v V A v M C
8 7 a1i φ Fun v V A v M C
9 3 mptexd φ v V A v M C V
10 ringgrp M Ring M Grp
11 eqid 0 M = 0 M
12 1 11 grpidcl M Grp 0 M R
13 2 10 12 3syl φ 0 M R
14 suppval1 Fun v V A v M C v V A v M C V 0 M R v V A v M C supp 0 M = u dom v V A v M C | v V A v M C u 0 M
15 8 9 13 14 syl3anc φ v V A v M C supp 0 M = u dom v V A v M C | v V A v M C u 0 M
16 ovex A v M C V
17 eqid v V A v M C = v V A v M C
18 16 17 dmmpti dom v V A v M C = V
19 18 a1i φ dom v V A v M C = V
20 ovex A u M u / v C V
21 nfcv _ v u
22 nfcv _ v A u
23 nfcv _ v M
24 nfcsb1v _ v u / v C
25 22 23 24 nfov _ v A u M u / v C
26 fveq2 v = u A v = A u
27 csbeq1a v = u C = u / v C
28 26 27 oveq12d v = u A v M C = A u M u / v C
29 21 25 28 17 fvmptf u V A u M u / v C V v V A v M C u = A u M u / v C
30 20 29 mpan2 u V v V A v M C u = A u M u / v C
31 30 18 eleq2s u dom v V A v M C v V A v M C u = A u M u / v C
32 31 adantl φ u dom v V A v M C v V A v M C u = A u M u / v C
33 32 neeq1d φ u dom v V A v M C v V A v M C u 0 M A u M u / v C 0 M
34 19 33 rabeqbidva φ u dom v V A v M C | v V A v M C u 0 M = u V | A u M u / v C 0 M
35 5 fdmd φ dom A = V
36 35 rabeqdv φ u dom A | A u 0 M = u V | A u 0 M
37 5 ffund φ Fun A
38 1 fvexi R V
39 38 a1i φ R V
40 39 3 elmapd φ A R V A : V R
41 5 40 mpbird φ A R V
42 suppval1 Fun A A R V 0 M R A supp 0 M = u dom A | A u 0 M
43 37 41 13 42 syl3anc φ A supp 0 M = u dom A | A u 0 M
44 6 fsuppimpd φ A supp 0 M Fin
45 43 44 eqeltrrd φ u dom A | A u 0 M Fin
46 36 45 eqeltrrd φ u V | A u 0 M Fin
47 simpr φ u V A u = 0 M A u = 0 M
48 47 oveq1d φ u V A u = 0 M A u M u / v C = 0 M M u / v C
49 2 ad2antrr φ u V A u = 0 M M Ring
50 simplr φ u V A u = 0 M u V
51 4 ralrimiva φ v V C R
52 51 ad2antrr φ u V A u = 0 M v V C R
53 rspcsbela u V v V C R u / v C R
54 50 52 53 syl2anc φ u V A u = 0 M u / v C R
55 eqid M = M
56 1 55 11 ringlz M Ring u / v C R 0 M M u / v C = 0 M
57 49 54 56 syl2anc φ u V A u = 0 M 0 M M u / v C = 0 M
58 48 57 eqtrd φ u V A u = 0 M A u M u / v C = 0 M
59 58 ex φ u V A u = 0 M A u M u / v C = 0 M
60 59 necon3d φ u V A u M u / v C 0 M A u 0 M
61 60 ss2rabdv φ u V | A u M u / v C 0 M u V | A u 0 M
62 ssfi u V | A u 0 M Fin u V | A u M u / v C 0 M u V | A u 0 M u V | A u M u / v C 0 M Fin
63 46 61 62 syl2anc φ u V | A u M u / v C 0 M Fin
64 34 63 eqeltrd φ u dom v V A v M C | v V A v M C u 0 M Fin
65 15 64 eqeltrd φ v V A v M C supp 0 M Fin
66 isfsupp v V A v M C V 0 M R finSupp 0 M v V A v M C Fun v V A v M C v V A v M C supp 0 M Fin
67 9 13 66 syl2anc φ finSupp 0 M v V A v M C Fun v V A v M C v V A v M C supp 0 M Fin
68 8 65 67 mpbir2and φ finSupp 0 M v V A v M C