Metamath Proof Explorer


Theorem rmfsupp2

Description: A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023)

Ref Expression
Hypotheses rmfsuppf2.r R=BaseM
rmfsupp2.m φMRing
rmfsupp2.v φVX
rmfsupp2.c φvVCR
rmfsupp2.a φA:VR
rmfsupp2.1 φfinSupp0MA
Assertion rmfsupp2 φfinSupp0MvVAvMC

Proof

Step Hyp Ref Expression
1 rmfsuppf2.r R=BaseM
2 rmfsupp2.m φMRing
3 rmfsupp2.v φVX
4 rmfsupp2.c φvVCR
5 rmfsupp2.a φA:VR
6 rmfsupp2.1 φfinSupp0MA
7 funmpt FunvVAvMC
8 7 a1i φFunvVAvMC
9 3 mptexd φvVAvMCV
10 ringgrp MRingMGrp
11 eqid 0M=0M
12 1 11 grpidcl MGrp0MR
13 2 10 12 3syl φ0MR
14 suppval1 FunvVAvMCvVAvMCV0MRvVAvMCsupp0M=udomvVAvMC|vVAvMCu0M
15 8 9 13 14 syl3anc φvVAvMCsupp0M=udomvVAvMC|vVAvMCu0M
16 ovex AvMCV
17 eqid vVAvMC=vVAvMC
18 16 17 dmmpti domvVAvMC=V
19 18 a1i φdomvVAvMC=V
20 ovex AuMu/vCV
21 nfcv _vu
22 nfcv _vAu
23 nfcv _vM
24 nfcsb1v _vu/vC
25 22 23 24 nfov _vAuMu/vC
26 fveq2 v=uAv=Au
27 csbeq1a v=uC=u/vC
28 26 27 oveq12d v=uAvMC=AuMu/vC
29 21 25 28 17 fvmptf uVAuMu/vCVvVAvMCu=AuMu/vC
30 20 29 mpan2 uVvVAvMCu=AuMu/vC
31 30 18 eleq2s udomvVAvMCvVAvMCu=AuMu/vC
32 31 adantl φudomvVAvMCvVAvMCu=AuMu/vC
33 32 neeq1d φudomvVAvMCvVAvMCu0MAuMu/vC0M
34 19 33 rabeqbidva φudomvVAvMC|vVAvMCu0M=uV|AuMu/vC0M
35 5 fdmd φdomA=V
36 35 rabeqdv φudomA|Au0M=uV|Au0M
37 5 ffund φFunA
38 1 fvexi RV
39 38 a1i φRV
40 39 3 elmapd φARVA:VR
41 5 40 mpbird φARV
42 suppval1 FunAARV0MRAsupp0M=udomA|Au0M
43 37 41 13 42 syl3anc φAsupp0M=udomA|Au0M
44 6 fsuppimpd φAsupp0MFin
45 43 44 eqeltrrd φudomA|Au0MFin
46 36 45 eqeltrrd φuV|Au0MFin
47 simpr φuVAu=0MAu=0M
48 47 oveq1d φuVAu=0MAuMu/vC=0MMu/vC
49 2 ad2antrr φuVAu=0MMRing
50 simplr φuVAu=0MuV
51 4 ralrimiva φvVCR
52 51 ad2antrr φuVAu=0MvVCR
53 rspcsbela uVvVCRu/vCR
54 50 52 53 syl2anc φuVAu=0Mu/vCR
55 eqid M=M
56 1 55 11 ringlz MRingu/vCR0MMu/vC=0M
57 49 54 56 syl2anc φuVAu=0M0MMu/vC=0M
58 48 57 eqtrd φuVAu=0MAuMu/vC=0M
59 58 ex φuVAu=0MAuMu/vC=0M
60 59 necon3d φuVAuMu/vC0MAu0M
61 60 ss2rabdv φuV|AuMu/vC0MuV|Au0M
62 ssfi uV|Au0MFinuV|AuMu/vC0MuV|Au0MuV|AuMu/vC0MFin
63 46 61 62 syl2anc φuV|AuMu/vC0MFin
64 34 63 eqeltrd φudomvVAvMC|vVAvMCu0MFin
65 15 64 eqeltrd φvVAvMCsupp0MFin
66 isfsupp vVAvMCV0MRfinSupp0MvVAvMCFunvVAvMCvVAvMCsupp0MFin
67 9 13 66 syl2anc φfinSupp0MvVAvMCFunvVAvMCvVAvMCsupp0MFin
68 8 65 67 mpbir2and φfinSupp0MvVAvMC