Step |
Hyp |
Ref |
Expression |
1 |
|
rmfsuppf2.r |
|
2 |
|
rmfsupp2.m |
|
3 |
|
rmfsupp2.v |
|
4 |
|
rmfsupp2.c |
|
5 |
|
rmfsupp2.a |
|
6 |
|
rmfsupp2.1 |
|
7 |
|
funmpt |
|
8 |
7
|
a1i |
|
9 |
3
|
mptexd |
|
10 |
|
ringgrp |
|
11 |
|
eqid |
|
12 |
1 11
|
grpidcl |
|
13 |
2 10 12
|
3syl |
|
14 |
|
suppval1 |
|
15 |
8 9 13 14
|
syl3anc |
|
16 |
|
ovex |
|
17 |
|
eqid |
|
18 |
16 17
|
dmmpti |
|
19 |
18
|
a1i |
|
20 |
|
ovex |
|
21 |
|
nfcv |
|
22 |
|
nfcv |
|
23 |
|
nfcv |
|
24 |
|
nfcsb1v |
|
25 |
22 23 24
|
nfov |
|
26 |
|
fveq2 |
|
27 |
|
csbeq1a |
|
28 |
26 27
|
oveq12d |
|
29 |
21 25 28 17
|
fvmptf |
|
30 |
20 29
|
mpan2 |
|
31 |
30 18
|
eleq2s |
|
32 |
31
|
adantl |
|
33 |
32
|
neeq1d |
|
34 |
19 33
|
rabeqbidva |
|
35 |
5
|
fdmd |
|
36 |
35
|
rabeqdv |
|
37 |
5
|
ffund |
|
38 |
1
|
fvexi |
|
39 |
38
|
a1i |
|
40 |
39 3
|
elmapd |
|
41 |
5 40
|
mpbird |
|
42 |
|
suppval1 |
|
43 |
37 41 13 42
|
syl3anc |
|
44 |
6
|
fsuppimpd |
|
45 |
43 44
|
eqeltrrd |
|
46 |
36 45
|
eqeltrrd |
|
47 |
|
simpr |
|
48 |
47
|
oveq1d |
|
49 |
2
|
ad2antrr |
|
50 |
|
simplr |
|
51 |
4
|
ralrimiva |
|
52 |
51
|
ad2antrr |
|
53 |
|
rspcsbela |
|
54 |
50 52 53
|
syl2anc |
|
55 |
|
eqid |
|
56 |
1 55 11
|
ringlz |
|
57 |
49 54 56
|
syl2anc |
|
58 |
48 57
|
eqtrd |
|
59 |
58
|
ex |
|
60 |
59
|
necon3d |
|
61 |
60
|
ss2rabdv |
|
62 |
|
ssfi |
|
63 |
46 61 62
|
syl2anc |
|
64 |
34 63
|
eqeltrd |
|
65 |
15 64
|
eqeltrd |
|
66 |
|
isfsupp |
|
67 |
9 13 66
|
syl2anc |
|
68 |
8 65 67
|
mpbir2and |
|