Description: Rings of sets are semirings of sets. (Contributed by Thierry Arnoux, 18-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rossros.q | |
|
rossros.n | |
||
Assertion | rossros | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rossros.q | |
|
2 | rossros.n | |
|
3 | 1 | rossspw | |
4 | elpwg | |
|
5 | 3 4 | mpbird | |
6 | 1 | 0elros | |
7 | uneq1 | |
|
8 | 7 | eleq1d | |
9 | difeq1 | |
|
10 | 9 | eleq1d | |
11 | 8 10 | anbi12d | |
12 | uneq2 | |
|
13 | 12 | eleq1d | |
14 | difeq2 | |
|
15 | 14 | eleq1d | |
16 | 13 15 | anbi12d | |
17 | 11 16 | cbvral2vw | |
18 | 17 | anbi2i | |
19 | 18 | rabbii | |
20 | 1 19 | eqtr4i | |
21 | 20 | inelros | |
22 | 21 | 3expb | |
23 | 20 | difelros | |
24 | 23 | 3expb | |
25 | 24 | snssd | |
26 | snex | |
|
27 | 26 | elpw | |
28 | 25 27 | sylibr | |
29 | snfi | |
|
30 | 29 | a1i | |
31 | disjxsn | |
|
32 | 31 | a1i | |
33 | unisng | |
|
34 | 24 33 | syl | |
35 | 34 | eqcomd | |
36 | eleq1 | |
|
37 | disjeq1 | |
|
38 | unieq | |
|
39 | 38 | eqeq2d | |
40 | 36 37 39 | 3anbi123d | |
41 | 40 | rspcev | |
42 | 28 30 32 35 41 | syl13anc | |
43 | 22 42 | jca | |
44 | 43 | ralrimivva | |
45 | 5 6 44 | 3jca | |
46 | 2 | issros | |
47 | 45 46 | sylibr | |