Metamath Proof Explorer


Theorem rossros

Description: Rings of sets are semirings of sets. (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypotheses rossros.q Q=s𝒫𝒫O|sxsysxysxys
rossros.n N=s𝒫𝒫O|sxsysxysz𝒫szFinDisjtztxy=z
Assertion rossros SQSN

Proof

Step Hyp Ref Expression
1 rossros.q Q=s𝒫𝒫O|sxsysxysxys
2 rossros.n N=s𝒫𝒫O|sxsysxysz𝒫szFinDisjtztxy=z
3 1 rossspw SQS𝒫O
4 elpwg SQS𝒫𝒫OS𝒫O
5 3 4 mpbird SQS𝒫𝒫O
6 1 0elros SQS
7 uneq1 u=xuv=xv
8 7 eleq1d u=xuvsxvs
9 difeq1 u=xuv=xv
10 9 eleq1d u=xuvsxvs
11 8 10 anbi12d u=xuvsuvsxvsxvs
12 uneq2 v=yxv=xy
13 12 eleq1d v=yxvsxys
14 difeq2 v=yxv=xy
15 14 eleq1d v=yxvsxys
16 13 15 anbi12d v=yxvsxvsxysxys
17 11 16 cbvral2vw usvsuvsuvsxsysxysxys
18 17 anbi2i susvsuvsuvssxsysxysxys
19 18 rabbii s𝒫𝒫O|susvsuvsuvs=s𝒫𝒫O|sxsysxysxys
20 1 19 eqtr4i Q=s𝒫𝒫O|susvsuvsuvs
21 20 inelros SQxSySxyS
22 21 3expb SQxSySxyS
23 20 difelros SQxSySxyS
24 23 3expb SQxSySxyS
25 24 snssd SQxSySxyS
26 snex xyV
27 26 elpw xy𝒫SxyS
28 25 27 sylibr SQxSySxy𝒫S
29 snfi xyFin
30 29 a1i SQxSySxyFin
31 disjxsn Disjtxyt
32 31 a1i SQxSySDisjtxyt
33 unisng xySxy=xy
34 24 33 syl SQxSySxy=xy
35 34 eqcomd SQxSySxy=xy
36 eleq1 z=xyzFinxyFin
37 disjeq1 z=xyDisjtztDisjtxyt
38 unieq z=xyz=xy
39 38 eqeq2d z=xyxy=zxy=xy
40 36 37 39 3anbi123d z=xyzFinDisjtztxy=zxyFinDisjtxytxy=xy
41 40 rspcev xy𝒫SxyFinDisjtxytxy=xyz𝒫SzFinDisjtztxy=z
42 28 30 32 35 41 syl13anc SQxSySz𝒫SzFinDisjtztxy=z
43 22 42 jca SQxSySxySz𝒫SzFinDisjtztxy=z
44 43 ralrimivva SQxSySxySz𝒫SzFinDisjtztxy=z
45 5 6 44 3jca SQS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z
46 2 issros SNS𝒫𝒫OSxSySxySz𝒫SzFinDisjtztxy=z
47 45 46 sylibr SQSN