Metamath Proof Explorer


Theorem rpnnen1lem1

Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)

Ref Expression
Hypotheses rpnnen1lem.1 T=n|nk<x
rpnnen1lem.2 F=xksupT<k
rpnnen1lem.n V
rpnnen1lem.q V
Assertion rpnnen1lem1 xFx

Proof

Step Hyp Ref Expression
1 rpnnen1lem.1 T=n|nk<x
2 rpnnen1lem.2 F=xksupT<k
3 rpnnen1lem.n V
4 rpnnen1lem.q V
5 3 mptex ksupT<kV
6 2 fvmpt2 xksupT<kVFx=ksupT<k
7 5 6 mpan2 xFx=ksupT<k
8 ssrab2 n|nk<x
9 1 8 eqsstri T
10 9 a1i xkT
11 nnre kk
12 remulcl kxkx
13 12 ancoms xkkx
14 11 13 sylan2 xkkx
15 btwnz kxnn<kxnkx<n
16 15 simpld kxnn<kx
17 14 16 syl xknn<kx
18 zre nn
19 18 adantl xknn
20 simpll xknx
21 nngt0 k0<k
22 11 21 jca kk0<k
23 22 ad2antlr xknk0<k
24 ltdivmul nxk0<knk<xn<kx
25 19 20 23 24 syl3anc xknnk<xn<kx
26 25 rexbidva xknnk<xnn<kx
27 17 26 mpbird xknnk<x
28 rabn0 n|nk<xnnk<x
29 27 28 sylibr xkn|nk<x
30 1 neeq1i Tn|nk<x
31 29 30 sylibr xkT
32 1 reqabi nTnnk<x
33 11 ad2antlr xknk
34 33 20 12 syl2anc xknkx
35 ltle nkxn<kxnkx
36 19 34 35 syl2anc xknn<kxnkx
37 25 36 sylbid xknnk<xnkx
38 37 impr xknnk<xnkx
39 32 38 sylan2b xknTnkx
40 39 ralrimiva xknTnkx
41 breq2 y=kxnynkx
42 41 ralbidv y=kxnTnynTnkx
43 42 rspcev kxnTnkxynTny
44 14 40 43 syl2anc xkynTny
45 suprzcl TTynTnysupT<T
46 10 31 44 45 syl3anc xksupT<T
47 9 46 sselid xksupT<
48 znq supT<ksupT<k
49 47 48 sylancom xksupT<k
50 eqid ksupT<k=ksupT<k
51 49 50 fmptd xksupT<k:
52 4 3 elmap ksupT<kksupT<k:
53 51 52 sylibr xksupT<k
54 7 53 eqeltrd xFx