Description: Lemma for rpnnen1 . (Contributed by Mario Carneiro, 12-May-2013) (Revised by NM, 13-Aug-2021) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpnnen1lem.1 | |
|
rpnnen1lem.2 | |
||
rpnnen1lem.n | |
||
rpnnen1lem.q | |
||
Assertion | rpnnen1lem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen1lem.1 | |
|
2 | rpnnen1lem.2 | |
|
3 | rpnnen1lem.n | |
|
4 | rpnnen1lem.q | |
|
5 | 3 | mptex | |
6 | 2 | fvmpt2 | |
7 | 5 6 | mpan2 | |
8 | ssrab2 | |
|
9 | 1 8 | eqsstri | |
10 | 9 | a1i | |
11 | nnre | |
|
12 | remulcl | |
|
13 | 12 | ancoms | |
14 | 11 13 | sylan2 | |
15 | btwnz | |
|
16 | 15 | simpld | |
17 | 14 16 | syl | |
18 | zre | |
|
19 | 18 | adantl | |
20 | simpll | |
|
21 | nngt0 | |
|
22 | 11 21 | jca | |
23 | 22 | ad2antlr | |
24 | ltdivmul | |
|
25 | 19 20 23 24 | syl3anc | |
26 | 25 | rexbidva | |
27 | 17 26 | mpbird | |
28 | rabn0 | |
|
29 | 27 28 | sylibr | |
30 | 1 | neeq1i | |
31 | 29 30 | sylibr | |
32 | 1 | reqabi | |
33 | 11 | ad2antlr | |
34 | 33 20 12 | syl2anc | |
35 | ltle | |
|
36 | 19 34 35 | syl2anc | |
37 | 25 36 | sylbid | |
38 | 37 | impr | |
39 | 32 38 | sylan2b | |
40 | 39 | ralrimiva | |
41 | breq2 | |
|
42 | 41 | ralbidv | |
43 | 42 | rspcev | |
44 | 14 40 43 | syl2anc | |
45 | suprzcl | |
|
46 | 10 31 44 45 | syl3anc | |
47 | 9 46 | sselid | |
48 | znq | |
|
49 | 47 48 | sylancom | |
50 | eqid | |
|
51 | 49 50 | fmptd | |
52 | 4 3 | elmap | |
53 | 51 52 | sylibr | |
54 | 7 53 | eqeltrd | |