Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rpnnen2.1 | |
|
Assertion | rpnnen2lem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen2.1 | |
|
2 | eqid | |
|
3 | nnz | |
|
4 | eqidd | |
|
5 | eluznn | |
|
6 | difss | |
|
7 | 1 | rpnnen2lem2 | |
8 | 6 7 | ax-mp | |
9 | 8 | ffvelcdmi | |
10 | 9 | recnd | |
11 | 5 10 | syl | |
12 | 1 | rpnnen2lem5 | |
13 | 6 12 | mpan | |
14 | 2 3 4 11 13 | isum1p | |
15 | 1 | rpnnen2lem1 | |
16 | 6 15 | mpan | |
17 | neldifsnd | |
|
18 | 17 | iffalsed | |
19 | 16 18 | eqtrd | |
20 | eqid | |
|
21 | peano2nn | |
|
22 | 21 | nnzd | |
23 | eqidd | |
|
24 | eluznn | |
|
25 | 21 24 | sylan | |
26 | 25 10 | syl | |
27 | 1re | |
|
28 | 3nn | |
|
29 | nndivre | |
|
30 | 27 28 29 | mp2an | |
31 | 30 | recni | |
32 | 31 | a1i | |
33 | 0re | |
|
34 | 3re | |
|
35 | 3pos | |
|
36 | 34 35 | recgt0ii | |
37 | 33 30 36 | ltleii | |
38 | absid | |
|
39 | 30 37 38 | mp2an | |
40 | 1lt3 | |
|
41 | recgt1 | |
|
42 | 34 35 41 | mp2an | |
43 | 40 42 | mpbi | |
44 | 39 43 | eqbrtri | |
45 | 44 | a1i | |
46 | 21 | nnnn0d | |
47 | 1 | rpnnen2lem1 | |
48 | 6 47 | mpan | |
49 | 25 48 | syl | |
50 | nnre | |
|
51 | 50 | adantr | |
52 | eluzle | |
|
53 | 52 | adantl | |
54 | nnltp1le | |
|
55 | 25 54 | syldan | |
56 | 53 55 | mpbird | |
57 | 51 56 | gtned | |
58 | eldifsn | |
|
59 | 25 57 58 | sylanbrc | |
60 | 59 | iftrued | |
61 | 49 60 | eqtrd | |
62 | 32 45 46 61 | geolim2 | |
63 | 20 22 23 26 62 | isumclim | |
64 | 19 63 | oveq12d | |
65 | 14 64 | eqtrd | |