Metamath Proof Explorer


Theorem rpnnen2lem9

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem9 MkMFMk=0+13M+1113

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 eqid M=M
3 nnz MM
4 eqidd MkMFMk=FMk
5 eluznn MkMk
6 difss M
7 1 rpnnen2lem2 MFM:
8 6 7 ax-mp FM:
9 8 ffvelcdmi kFMk
10 9 recnd kFMk
11 5 10 syl MkMFMk
12 1 rpnnen2lem5 MMseqM+FMdom
13 6 12 mpan MseqM+FMdom
14 2 3 4 11 13 isum1p MkMFMk=FMM+kM+1FMk
15 1 rpnnen2lem1 MMFMM=ifMM13M0
16 6 15 mpan MFMM=ifMM13M0
17 neldifsnd M¬MM
18 17 iffalsed MifMM13M0=0
19 16 18 eqtrd MFMM=0
20 eqid M+1=M+1
21 peano2nn MM+1
22 21 nnzd MM+1
23 eqidd MkM+1FMk=FMk
24 eluznn M+1kM+1k
25 21 24 sylan MkM+1k
26 25 10 syl MkM+1FMk
27 1re 1
28 3nn 3
29 nndivre 1313
30 27 28 29 mp2an 13
31 30 recni 13
32 31 a1i M13
33 0re 0
34 3re 3
35 3pos 0<3
36 34 35 recgt0ii 0<13
37 33 30 36 ltleii 013
38 absid 1301313=13
39 30 37 38 mp2an 13=13
40 1lt3 1<3
41 recgt1 30<31<313<1
42 34 35 41 mp2an 1<313<1
43 40 42 mpbi 13<1
44 39 43 eqbrtri 13<1
45 44 a1i M13<1
46 21 nnnn0d MM+10
47 1 rpnnen2lem1 MkFMk=ifkM13k0
48 6 47 mpan kFMk=ifkM13k0
49 25 48 syl MkM+1FMk=ifkM13k0
50 nnre MM
51 50 adantr MkM+1M
52 eluzle kM+1M+1k
53 52 adantl MkM+1M+1k
54 nnltp1le MkM<kM+1k
55 25 54 syldan MkM+1M<kM+1k
56 53 55 mpbird MkM+1M<k
57 51 56 gtned MkM+1kM
58 eldifsn kMkkM
59 25 57 58 sylanbrc MkM+1kM
60 59 iftrued MkM+1ifkM13k0=13k
61 49 60 eqtrd MkM+1FMk=13k
62 32 45 46 61 geolim2 MseqM+1+FM13M+1113
63 20 22 23 26 62 isumclim MkM+1FMk=13M+1113
64 19 63 oveq12d MFMM+kM+1FMk=0+13M+1113
65 14 64 eqtrd MkMFMk=0+13M+1113