| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniretop |
|
| 2 |
|
rehaus |
|
| 3 |
2
|
a1i |
|
| 4 |
|
rerrext |
|
| 5 |
|
eqid |
|
| 6 |
|
retopn |
|
| 7 |
5 6
|
rrhcne |
|
| 8 |
4 7
|
mp1i |
|
| 9 |
|
retop |
|
| 10 |
1
|
toptopon |
|
| 11 |
9 10
|
mpbi |
|
| 12 |
|
idcn |
|
| 13 |
11 12
|
ax-mp |
|
| 14 |
13
|
a1i |
|
| 15 |
9
|
a1i |
|
| 16 |
|
f1oi |
|
| 17 |
|
f1of |
|
| 18 |
16 17
|
ax-mp |
|
| 19 |
|
qssre |
|
| 20 |
|
fss |
|
| 21 |
18 19 20
|
mp2an |
|
| 22 |
21
|
a1i |
|
| 23 |
19
|
a1i |
|
| 24 |
|
qdensere |
|
| 25 |
24
|
a1i |
|
| 26 |
9
|
a1i |
|
| 27 |
|
simplr |
|
| 28 |
|
simpr |
|
| 29 |
|
opnneip |
|
| 30 |
26 27 28 29
|
syl3anc |
|
| 31 |
|
fvex |
|
| 32 |
|
qex |
|
| 33 |
|
elrestr |
|
| 34 |
31 32 33
|
mp3an12 |
|
| 35 |
30 34
|
syl |
|
| 36 |
|
inss2 |
|
| 37 |
|
resiima |
|
| 38 |
36 37
|
ax-mp |
|
| 39 |
|
inss1 |
|
| 40 |
38 39
|
eqsstri |
|
| 41 |
40
|
a1i |
|
| 42 |
|
imaeq2 |
|
| 43 |
42
|
sseq1d |
|
| 44 |
43
|
rspcev |
|
| 45 |
35 41 44
|
syl2anc |
|
| 46 |
45
|
ex |
|
| 47 |
46
|
ralrimiva |
|
| 48 |
47
|
ancli |
|
| 49 |
24
|
eleq2i |
|
| 50 |
49
|
biimpri |
|
| 51 |
|
trnei |
|
| 52 |
11 19 51
|
mp3an12 |
|
| 53 |
50 52
|
mpbid |
|
| 54 |
|
isflf |
|
| 55 |
11 21 54
|
mp3an13 |
|
| 56 |
53 55
|
syl |
|
| 57 |
48 56
|
mpbird |
|
| 58 |
57
|
ne0d |
|
| 59 |
58
|
adantl |
|
| 60 |
|
recusp |
|
| 61 |
|
cuspusp |
|
| 62 |
60 61
|
ax-mp |
|
| 63 |
6
|
uspreg |
|
| 64 |
62 2 63
|
mp2an |
|
| 65 |
64
|
a1i |
|
| 66 |
|
resabs1 |
|
| 67 |
19 66
|
ax-mp |
|
| 68 |
1
|
cnrest |
|
| 69 |
13 19 68
|
mp2an |
|
| 70 |
67 69
|
eqeltrri |
|
| 71 |
70
|
a1i |
|
| 72 |
1 1 15 3 22 23 25 59 65 71
|
cnextfres1 |
|
| 73 |
72
|
mptru |
|
| 74 |
|
recms |
|
| 75 |
74
|
elexi |
|
| 76 |
5 6
|
rrhval |
|
| 77 |
75 76
|
ax-mp |
|
| 78 |
|
qqhre |
|
| 79 |
78
|
fveq2i |
|
| 80 |
77 79
|
eqtri |
|
| 81 |
80
|
reseq1i |
|
| 82 |
73 81 67
|
3eqtr4i |
|
| 83 |
82
|
a1i |
|
| 84 |
1 3 8 14 83 23 25
|
hauseqcn |
|
| 85 |
84
|
mptru |
|