Metamath Proof Explorer


Theorem rrx2linest2

Description: The line passing through the two different points X and Y in a real Euclidean space of dimension 2 in another "standard form" (usually with ( p1 ) = x and ( p2 ) = y ). (Contributed by AV, 23-Feb-2023)

Ref Expression
Hypotheses rrx2linest2.i I=12
rrx2linest2.e E=msup
rrx2linest2.p P=I
rrx2linest2.l L=LineME
rrx2linest2.a A=X2Y2
rrx2linest2.b B=Y1X1
rrx2linest2.c C=X2Y1X1Y2
Assertion rrx2linest2 XPYPXYXLY=pP|Ap1+Bp2=C

Proof

Step Hyp Ref Expression
1 rrx2linest2.i I=12
2 rrx2linest2.e E=msup
3 rrx2linest2.p P=I
4 rrx2linest2.l L=LineME
5 rrx2linest2.a A=X2Y2
6 rrx2linest2.b B=Y1X1
7 rrx2linest2.c C=X2Y1X1Y2
8 eqid Y2X2=Y2X2
9 1 2 3 4 6 8 7 rrx2linest XPYPXYXLY=pP|Bp2=Y2X2p1+C
10 eqcom Bp2=Y2X2p1+CY2X2p1+C=Bp2
11 1 3 rrx2pyel YPY2
12 11 3ad2ant2 XPYPXYY2
13 1 3 rrx2pyel XPX2
14 13 3ad2ant1 XPYPXYX2
15 12 14 resubcld XPYPXYY2X2
16 15 adantr XPYPXYpPY2X2
17 1 3 rrx2pxel pPp1
18 17 adantl XPYPXYpPp1
19 16 18 remulcld XPYPXYpPY2X2p1
20 19 recnd XPYPXYpPY2X2p1
21 1 3 rrx2pxel YPY1
22 21 3ad2ant2 XPYPXYY1
23 14 22 remulcld XPYPXYX2Y1
24 1 3 rrx2pxel XPX1
25 24 3ad2ant1 XPYPXYX1
26 25 12 remulcld XPYPXYX1Y2
27 23 26 resubcld XPYPXYX2Y1X1Y2
28 7 27 eqeltrid XPYPXYC
29 28 adantr XPYPXYpPC
30 29 recnd XPYPXYpPC
31 22 25 resubcld XPYPXYY1X1
32 6 31 eqeltrid XPYPXYB
33 32 adantr XPYPXYpPB
34 1 3 rrx2pyel pPp2
35 34 adantl XPYPXYpPp2
36 33 35 remulcld XPYPXYpPBp2
37 36 recnd XPYPXYpPBp2
38 20 30 37 addrsub XPYPXYpPY2X2p1+C=Bp2C=Bp2Y2X2p1
39 eqcom C=Bp2Y2X2p1Bp2Y2X2p1=C
40 14 12 resubcld XPYPXYX2Y2
41 5 40 eqeltrid XPYPXYA
42 41 adantr XPYPXYpPA
43 42 18 remulcld XPYPXYpPAp1
44 43 recnd XPYPXYpPAp1
45 44 37 addcomd XPYPXYpPAp1+Bp2=Bp2+Ap1
46 12 adantr XPYPXYpPY2
47 46 recnd XPYPXYpPY2
48 14 adantr XPYPXYpPX2
49 48 recnd XPYPXYpPX2
50 47 49 negsubdi2d XPYPXYpPY2X2=X2Y2
51 5 50 eqtr4id XPYPXYpPA=Y2X2
52 51 oveq1d XPYPXYpPAp1=Y2X2p1
53 16 recnd XPYPXYpPY2X2
54 18 recnd XPYPXYpPp1
55 53 54 mulneg1d XPYPXYpPY2X2p1=Y2X2p1
56 52 55 eqtrd XPYPXYpPAp1=Y2X2p1
57 56 oveq2d XPYPXYpPBp2+Ap1=Bp2+Y2X2p1
58 37 20 negsubd XPYPXYpPBp2+Y2X2p1=Bp2Y2X2p1
59 45 57 58 3eqtrd XPYPXYpPAp1+Bp2=Bp2Y2X2p1
60 59 eqeq1d XPYPXYpPAp1+Bp2=CBp2Y2X2p1=C
61 39 60 bitr4id XPYPXYpPC=Bp2Y2X2p1Ap1+Bp2=C
62 38 61 bitrd XPYPXYpPY2X2p1+C=Bp2Ap1+Bp2=C
63 10 62 bitrid XPYPXYpPBp2=Y2X2p1+CAp1+Bp2=C
64 63 rabbidva XPYPXYpP|Bp2=Y2X2p1+C=pP|Ap1+Bp2=C
65 9 64 eqtrd XPYPXYXLY=pP|Ap1+Bp2=C