Metamath Proof Explorer


Theorem rtrclreclem4

Description: The reflexive, transitive closure of R is the smallest reflexive, transitive relation which contains R and the identity. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 13-Jul-2024)

Ref Expression
Hypothesis rtrclreclem.1 φRelR
Assertion rtrclreclem4 φsIdomRranRsRsssst*recRs

Proof

Step Hyp Ref Expression
1 rtrclreclem.1 φRelR
2 eqidd φRVrVn0rrn=rVn0rrn
3 oveq1 r=Rrrn=Rrn
4 3 iuneq2d r=Rn0rrn=n0Rrn
5 4 adantl φRVr=Rn0rrn=n0Rrn
6 simpr φRVRV
7 nn0ex 0V
8 ovex RrnV
9 7 8 iunex n0RrnV
10 9 a1i φRVn0RrnV
11 2 5 6 10 fvmptd φRVrVn0rrnR=n0Rrn
12 eleq1 i=0i000
13 12 anbi1d i=0i0φRVsssRsIdomRranRs00φRVsssRsIdomRranRs
14 oveq2 i=0Rri=Rr0
15 14 sseq1d i=0RrisRr0s
16 13 15 imbi12d i=0i0φRVsssRsIdomRranRsRris00φRVsssRsIdomRranRsRr0s
17 eleq1 i=mi0m0
18 17 anbi1d i=mi0φRVsssRsIdomRranRsm0φRVsssRsIdomRranRs
19 oveq2 i=mRri=Rrm
20 19 sseq1d i=mRrisRrms
21 18 20 imbi12d i=mi0φRVsssRsIdomRranRsRrism0φRVsssRsIdomRranRsRrms
22 eleq1 i=m+1i0m+10
23 22 anbi1d i=m+1i0φRVsssRsIdomRranRsm+10φRVsssRsIdomRranRs
24 oveq2 i=m+1Rri=Rrm+1
25 24 sseq1d i=m+1RrisRrm+1s
26 23 25 imbi12d i=m+1i0φRVsssRsIdomRranRsRrism+10φRVsssRsIdomRranRsRrm+1s
27 eleq1 i=ni0n0
28 27 anbi1d i=ni0φRVsssRsIdomRranRsn0φRVsssRsIdomRranRs
29 oveq2 i=nRri=Rrn
30 29 sseq1d i=nRrisRrns
31 28 30 imbi12d i=ni0φRVsssRsIdomRranRsRrisn0φRVsssRsIdomRranRsRrns
32 simprll 00φRVsssRsIdomRranRsφ
33 32 1 syl 00φRVsssRsIdomRranRsRelR
34 simprlr 00φRVsssRsIdomRranRsRV
35 33 34 relexp0d 00φRVsssRsIdomRranRsRr0=IR
36 relfld RelRR=domRranR
37 33 36 syl 00φRVsssRsIdomRranRsR=domRranR
38 simprrr φRVsssRsIdomRranRsIdomRranRs
39 38 adantl 00φRVsssRsIdomRranRsIdomRranRs
40 reseq2 R=domRranRIR=IdomRranR
41 40 sseq1d R=domRranRIRsIdomRranRs
42 39 41 imbitrrid R=domRranR00φRVsssRsIdomRranRsIRs
43 37 42 mpcom 00φRVsssRsIdomRranRsIRs
44 35 43 eqsstrd 00φRVsssRsIdomRranRsRr0s
45 simprrr RsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0
46 45 adantl sssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0
47 46 adantl φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0
48 47 adantl m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0
49 simprl m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0φRV
50 simprrl m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0sss
51 simprrl φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rs
52 51 adantl m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rs
53 simprrl sssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0IdomRranRs
54 53 adantl φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0IdomRranRs
55 54 adantl m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0IdomRranRs
56 50 52 55 jca32 m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0sssRsIdomRranRs
57 48 49 56 jca32 m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0φRVsssRsIdomRranRs
58 simprrl RsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0φRVsssRsIdomRranRsRrms
59 58 adantl sssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0φRVsssRsIdomRranRsRrms
60 59 adantl φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0φRVsssRsIdomRranRsRrms
61 60 adantl m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0φRVsssRsIdomRranRsRrms
62 57 61 mpd m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrms
63 simprll m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0φ
64 63 adantl Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0φ
65 64 1 syl Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0RelR
66 48 adantl Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m0
67 65 66 relexpsucrd Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrm+1=RrmR
68 52 adantl Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rs
69 coss2 RsRrmRRrms
70 68 69 syl Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0RrmRRrms
71 coss1 RrmsRrmsss
72 71 50 sylan9ss Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrmss
73 70 72 sstrd Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0RrmRs
74 67 73 eqsstrd Rrmsm+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrm+1s
75 62 74 mpancom m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrm+1s
76 75 expcom φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m+10Rrm+1s
77 76 expcom sssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0φRVm+10Rrm+1s
78 77 expcom RsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0sssφRVm+10Rrm+1s
79 78 anassrs RsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0sssφRVm+10Rrm+1s
80 79 impcom sssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0φRVm+10Rrm+1s
81 80 anassrs sssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0φRVm+10Rrm+1s
82 81 impcom φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m+10Rrm+1s
83 82 anassrs φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0m+10Rrm+1s
84 83 impcom m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrm+1s
85 84 anassrs m+10φRVsssRsIdomRranRsm0φRVsssRsIdomRranRsRrmsm0Rrm+1s
86 85 expcom m0φRVsssRsIdomRranRsRrmsm0m+10φRVsssRsIdomRranRsRrm+1s
87 86 expcom m0m0φRVsssRsIdomRranRsRrmsm+10φRVsssRsIdomRranRsRrm+1s
88 16 21 26 31 44 87 nn0ind n0n0φRVsssRsIdomRranRsRrns
89 88 anabsi5 n0φRVsssRsIdomRranRsRrns
90 89 expcom φRVsssRsIdomRranRsn0Rrns
91 90 ralrimiv φRVsssRsIdomRranRsn0Rrns
92 iunss n0Rrnsn0Rrns
93 91 92 sylibr φRVsssRsIdomRranRsn0Rrns
94 93 expcom sssRsIdomRranRsφRVn0Rrns
95 94 expcom RsIdomRranRssssφRVn0Rrns
96 95 expcom IdomRranRsRssssφRVn0Rrns
97 96 3imp1 IdomRranRsRssssφRVn0Rrns
98 97 expcom φRVIdomRranRsRssssn0Rrns
99 sseq1 rVn0rrnR=n0RrnrVn0rrnRsn0Rrns
100 99 imbi2d rVn0rrnR=n0RrnIdomRranRsRssssrVn0rrnRsIdomRranRsRssssn0Rrns
101 98 100 imbitrrid rVn0rrnR=n0RrnφRVIdomRranRsRssssrVn0rrnRs
102 11 101 mpcom φRVIdomRranRsRssssrVn0rrnRs
103 df-rtrclrec t*rec=rVn0rrn
104 fveq1 t*rec=rVn0rrnt*recR=rVn0rrnR
105 104 sseq1d t*rec=rVn0rrnt*recRsrVn0rrnRs
106 105 imbi2d t*rec=rVn0rrnIdomRranRsRsssst*recRsIdomRranRsRssssrVn0rrnRs
107 106 imbi2d t*rec=rVn0rrnφRVIdomRranRsRsssst*recRsφRVIdomRranRsRssssrVn0rrnRs
108 103 107 ax-mp φRVIdomRranRsRsssst*recRsφRVIdomRranRsRssssrVn0rrnRs
109 102 108 mpbir φRVIdomRranRsRsssst*recRs
110 109 ex φRVIdomRranRsRsssst*recRs
111 fvprc ¬RVt*recR=
112 0ss s
113 111 112 eqsstrdi ¬RVt*recRs
114 113 a1d ¬RVIdomRranRsRsssst*recRs
115 110 114 pm2.61d1 φIdomRranRsRsssst*recRs
116 115 alrimiv φsIdomRranRsRsssst*recRs