Metamath Proof Explorer


Theorem scmataddcl

Description: The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatid.a A=NMatR
scmatid.b B=BaseA
scmatid.e E=BaseR
scmatid.0 0˙=0R
scmatid.s S=NScMatR
Assertion scmataddcl NFinRRingXSYSX+AYS

Proof

Step Hyp Ref Expression
1 scmatid.a A=NMatR
2 scmatid.b B=BaseA
3 scmatid.e E=BaseR
4 scmatid.0 0˙=0R
5 scmatid.s S=NScMatR
6 eqid 1A=1A
7 eqid A=A
8 3 1 2 6 7 5 scmatscmid NFinRRingXScEX=cA1A
9 8 3expa NFinRRingXScEX=cA1A
10 9 adantrr NFinRRingXSYScEX=cA1A
11 3 1 2 6 7 5 scmatscmid NFinRRingYSdEY=dA1A
12 11 3expia NFinRRingYSdEY=dA1A
13 oveq12 X=cA1AY=dA1AX+AY=cA1A+AdA1A
14 13 adantl NFinRRingdEcEX=cA1AY=dA1AX+AY=cA1A+AdA1A
15 1 matlmod NFinRRingALMod
16 15 ad2antrr NFinRRingdEcEALMod
17 1 matsca2 NFinRRingR=ScalarA
18 17 fveq2d NFinRRingBaseR=BaseScalarA
19 3 18 eqtrid NFinRRingE=BaseScalarA
20 19 eleq2d NFinRRingcEcBaseScalarA
21 20 biimpd NFinRRingcEcBaseScalarA
22 21 adantr NFinRRingdEcEcBaseScalarA
23 22 imp NFinRRingdEcEcBaseScalarA
24 19 eleq2d NFinRRingdEdBaseScalarA
25 24 biimpa NFinRRingdEdBaseScalarA
26 25 adantr NFinRRingdEcEdBaseScalarA
27 1 matring NFinRRingARing
28 2 6 ringidcl ARing1AB
29 27 28 syl NFinRRing1AB
30 29 ad2antrr NFinRRingdEcE1AB
31 eqid +A=+A
32 eqid ScalarA=ScalarA
33 eqid BaseScalarA=BaseScalarA
34 eqid +ScalarA=+ScalarA
35 2 31 32 7 33 34 lmodvsdir ALModcBaseScalarAdBaseScalarA1ABc+ScalarAdA1A=cA1A+AdA1A
36 16 23 26 30 35 syl13anc NFinRRingdEcEc+ScalarAdA1A=cA1A+AdA1A
37 36 eqcomd NFinRRingdEcEcA1A+AdA1A=c+ScalarAdA1A
38 simpll NFinRRingdEcENFinRRing
39 17 eqcomd NFinRRingScalarA=R
40 39 ad2antrr NFinRRingdEcEScalarA=R
41 40 fveq2d NFinRRingdEcE+ScalarA=+R
42 41 oveqd NFinRRingdEcEc+ScalarAd=c+Rd
43 ringgrp RRingRGrp
44 43 adantl NFinRRingRGrp
45 44 ad2antrr NFinRRingdEcERGrp
46 simpr NFinRRingdEcEcE
47 simplr NFinRRingdEcEdE
48 eqid +R=+R
49 3 48 grpcl RGrpcEdEc+RdE
50 45 46 47 49 syl3anc NFinRRingdEcEc+RdE
51 42 50 eqeltrd NFinRRingdEcEc+ScalarAdE
52 3 1 2 7 matvscl NFinRRingc+ScalarAdE1ABc+ScalarAdA1AB
53 38 51 30 52 syl12anc NFinRRingdEcEc+ScalarAdA1AB
54 oveq1 e=c+ScalarAdeA1A=c+ScalarAdA1A
55 54 eqeq2d e=c+ScalarAdc+ScalarAdA1A=eA1Ac+ScalarAdA1A=c+ScalarAdA1A
56 55 adantl NFinRRingdEcEe=c+ScalarAdc+ScalarAdA1A=eA1Ac+ScalarAdA1A=c+ScalarAdA1A
57 eqidd NFinRRingdEcEc+ScalarAdA1A=c+ScalarAdA1A
58 51 56 57 rspcedvd NFinRRingdEcEeEc+ScalarAdA1A=eA1A
59 3 1 2 6 7 5 scmatel NFinRRingc+ScalarAdA1ASc+ScalarAdA1ABeEc+ScalarAdA1A=eA1A
60 59 ad2antrr NFinRRingdEcEc+ScalarAdA1ASc+ScalarAdA1ABeEc+ScalarAdA1A=eA1A
61 53 58 60 mpbir2and NFinRRingdEcEc+ScalarAdA1AS
62 37 61 eqeltrd NFinRRingdEcEcA1A+AdA1AS
63 62 adantr NFinRRingdEcEX=cA1AY=dA1AcA1A+AdA1AS
64 14 63 eqeltrd NFinRRingdEcEX=cA1AY=dA1AX+AYS
65 64 exp32 NFinRRingdEcEX=cA1AY=dA1AX+AYS
66 65 rexlimdva NFinRRingdEcEX=cA1AY=dA1AX+AYS
67 66 com23 NFinRRingdEY=dA1AcEX=cA1AX+AYS
68 67 rexlimdva NFinRRingdEY=dA1AcEX=cA1AX+AYS
69 12 68 syldc YSNFinRRingcEX=cA1AX+AYS
70 69 adantl XSYSNFinRRingcEX=cA1AX+AYS
71 70 impcom NFinRRingXSYScEX=cA1AX+AYS
72 10 71 mpd NFinRRingXSYSX+AYS