Database
BASIC LINEAR ALGEBRA
Matrices
The subalgebras of diagonal and scalar matrices
scmataddcl
Next ⟩
scmatsubcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
scmataddcl
Description:
The sum of two scalar matrices is a scalar matrix.
(Contributed by
AV
, 25-Dec-2019)
Ref
Expression
Hypotheses
scmatid.a
⊢
A
=
N
Mat
R
scmatid.b
⊢
B
=
Base
A
scmatid.e
⊢
E
=
Base
R
scmatid.0
⊢
0
˙
=
0
R
scmatid.s
⊢
S
=
N
ScMat
R
Assertion
scmataddcl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
X
∈
S
∧
Y
∈
S
→
X
+
A
Y
∈
S
Proof
Step
Hyp
Ref
Expression
1
scmatid.a
⊢
A
=
N
Mat
R
2
scmatid.b
⊢
B
=
Base
A
3
scmatid.e
⊢
E
=
Base
R
4
scmatid.0
⊢
0
˙
=
0
R
5
scmatid.s
⊢
S
=
N
ScMat
R
6
eqid
⊢
1
A
=
1
A
7
eqid
⊢
⋅
A
=
⋅
A
8
3
1
2
6
7
5
scmatscmid
⊢
N
∈
Fin
∧
R
∈
Ring
∧
X
∈
S
→
∃
c
∈
E
X
=
c
⋅
A
1
A
9
8
3expa
⊢
N
∈
Fin
∧
R
∈
Ring
∧
X
∈
S
→
∃
c
∈
E
X
=
c
⋅
A
1
A
10
9
adantrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
X
∈
S
∧
Y
∈
S
→
∃
c
∈
E
X
=
c
⋅
A
1
A
11
3
1
2
6
7
5
scmatscmid
⊢
N
∈
Fin
∧
R
∈
Ring
∧
Y
∈
S
→
∃
d
∈
E
Y
=
d
⋅
A
1
A
12
11
3expia
⊢
N
∈
Fin
∧
R
∈
Ring
→
Y
∈
S
→
∃
d
∈
E
Y
=
d
⋅
A
1
A
13
oveq12
⊢
X
=
c
⋅
A
1
A
∧
Y
=
d
⋅
A
1
A
→
X
+
A
Y
=
c
⋅
A
1
A
+
A
d
⋅
A
1
A
14
13
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
∧
X
=
c
⋅
A
1
A
∧
Y
=
d
⋅
A
1
A
→
X
+
A
Y
=
c
⋅
A
1
A
+
A
d
⋅
A
1
A
15
1
matlmod
⊢
N
∈
Fin
∧
R
∈
Ring
→
A
∈
LMod
16
15
ad2antrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
A
∈
LMod
17
1
matsca2
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
=
Scalar
A
18
17
fveq2d
⊢
N
∈
Fin
∧
R
∈
Ring
→
Base
R
=
Base
Scalar
A
19
3
18
eqtrid
⊢
N
∈
Fin
∧
R
∈
Ring
→
E
=
Base
Scalar
A
20
19
eleq2d
⊢
N
∈
Fin
∧
R
∈
Ring
→
c
∈
E
↔
c
∈
Base
Scalar
A
21
20
biimpd
⊢
N
∈
Fin
∧
R
∈
Ring
→
c
∈
E
→
c
∈
Base
Scalar
A
22
21
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
→
c
∈
E
→
c
∈
Base
Scalar
A
23
22
imp
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
∈
Base
Scalar
A
24
19
eleq2d
⊢
N
∈
Fin
∧
R
∈
Ring
→
d
∈
E
↔
d
∈
Base
Scalar
A
25
24
biimpa
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
→
d
∈
Base
Scalar
A
26
25
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
d
∈
Base
Scalar
A
27
1
matring
⊢
N
∈
Fin
∧
R
∈
Ring
→
A
∈
Ring
28
2
6
ringidcl
⊢
A
∈
Ring
→
1
A
∈
B
29
27
28
syl
⊢
N
∈
Fin
∧
R
∈
Ring
→
1
A
∈
B
30
29
ad2antrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
1
A
∈
B
31
eqid
⊢
+
A
=
+
A
32
eqid
⊢
Scalar
A
=
Scalar
A
33
eqid
⊢
Base
Scalar
A
=
Base
Scalar
A
34
eqid
⊢
+
Scalar
A
=
+
Scalar
A
35
2
31
32
7
33
34
lmodvsdir
⊢
A
∈
LMod
∧
c
∈
Base
Scalar
A
∧
d
∈
Base
Scalar
A
∧
1
A
∈
B
→
c
+
Scalar
A
d
⋅
A
1
A
=
c
⋅
A
1
A
+
A
d
⋅
A
1
A
36
16
23
26
30
35
syl13anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
⋅
A
1
A
=
c
⋅
A
1
A
+
A
d
⋅
A
1
A
37
36
eqcomd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
⋅
A
1
A
+
A
d
⋅
A
1
A
=
c
+
Scalar
A
d
⋅
A
1
A
38
simpll
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
N
∈
Fin
∧
R
∈
Ring
39
17
eqcomd
⊢
N
∈
Fin
∧
R
∈
Ring
→
Scalar
A
=
R
40
39
ad2antrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
Scalar
A
=
R
41
40
fveq2d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
+
Scalar
A
=
+
R
42
41
oveqd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
=
c
+
R
d
43
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
44
43
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
∈
Grp
45
44
ad2antrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
R
∈
Grp
46
simpr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
∈
E
47
simplr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
d
∈
E
48
eqid
⊢
+
R
=
+
R
49
3
48
grpcl
⊢
R
∈
Grp
∧
c
∈
E
∧
d
∈
E
→
c
+
R
d
∈
E
50
45
46
47
49
syl3anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
R
d
∈
E
51
42
50
eqeltrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
∈
E
52
3
1
2
7
matvscl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
c
+
Scalar
A
d
∈
E
∧
1
A
∈
B
→
c
+
Scalar
A
d
⋅
A
1
A
∈
B
53
38
51
30
52
syl12anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
⋅
A
1
A
∈
B
54
oveq1
⊢
e
=
c
+
Scalar
A
d
→
e
⋅
A
1
A
=
c
+
Scalar
A
d
⋅
A
1
A
55
54
eqeq2d
⊢
e
=
c
+
Scalar
A
d
→
c
+
Scalar
A
d
⋅
A
1
A
=
e
⋅
A
1
A
↔
c
+
Scalar
A
d
⋅
A
1
A
=
c
+
Scalar
A
d
⋅
A
1
A
56
55
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
∧
e
=
c
+
Scalar
A
d
→
c
+
Scalar
A
d
⋅
A
1
A
=
e
⋅
A
1
A
↔
c
+
Scalar
A
d
⋅
A
1
A
=
c
+
Scalar
A
d
⋅
A
1
A
57
eqidd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
⋅
A
1
A
=
c
+
Scalar
A
d
⋅
A
1
A
58
51
56
57
rspcedvd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
∃
e
∈
E
c
+
Scalar
A
d
⋅
A
1
A
=
e
⋅
A
1
A
59
3
1
2
6
7
5
scmatel
⊢
N
∈
Fin
∧
R
∈
Ring
→
c
+
Scalar
A
d
⋅
A
1
A
∈
S
↔
c
+
Scalar
A
d
⋅
A
1
A
∈
B
∧
∃
e
∈
E
c
+
Scalar
A
d
⋅
A
1
A
=
e
⋅
A
1
A
60
59
ad2antrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
⋅
A
1
A
∈
S
↔
c
+
Scalar
A
d
⋅
A
1
A
∈
B
∧
∃
e
∈
E
c
+
Scalar
A
d
⋅
A
1
A
=
e
⋅
A
1
A
61
53
58
60
mpbir2and
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
+
Scalar
A
d
⋅
A
1
A
∈
S
62
37
61
eqeltrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
c
⋅
A
1
A
+
A
d
⋅
A
1
A
∈
S
63
62
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
∧
X
=
c
⋅
A
1
A
∧
Y
=
d
⋅
A
1
A
→
c
⋅
A
1
A
+
A
d
⋅
A
1
A
∈
S
64
14
63
eqeltrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
∧
X
=
c
⋅
A
1
A
∧
Y
=
d
⋅
A
1
A
→
X
+
A
Y
∈
S
65
64
exp32
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
∧
c
∈
E
→
X
=
c
⋅
A
1
A
→
Y
=
d
⋅
A
1
A
→
X
+
A
Y
∈
S
66
65
rexlimdva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
→
∃
c
∈
E
X
=
c
⋅
A
1
A
→
Y
=
d
⋅
A
1
A
→
X
+
A
Y
∈
S
67
66
com23
⊢
N
∈
Fin
∧
R
∈
Ring
∧
d
∈
E
→
Y
=
d
⋅
A
1
A
→
∃
c
∈
E
X
=
c
⋅
A
1
A
→
X
+
A
Y
∈
S
68
67
rexlimdva
⊢
N
∈
Fin
∧
R
∈
Ring
→
∃
d
∈
E
Y
=
d
⋅
A
1
A
→
∃
c
∈
E
X
=
c
⋅
A
1
A
→
X
+
A
Y
∈
S
69
12
68
syldc
⊢
Y
∈
S
→
N
∈
Fin
∧
R
∈
Ring
→
∃
c
∈
E
X
=
c
⋅
A
1
A
→
X
+
A
Y
∈
S
70
69
adantl
⊢
X
∈
S
∧
Y
∈
S
→
N
∈
Fin
∧
R
∈
Ring
→
∃
c
∈
E
X
=
c
⋅
A
1
A
→
X
+
A
Y
∈
S
71
70
impcom
⊢
N
∈
Fin
∧
R
∈
Ring
∧
X
∈
S
∧
Y
∈
S
→
∃
c
∈
E
X
=
c
⋅
A
1
A
→
X
+
A
Y
∈
S
72
10
71
mpd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
X
∈
S
∧
Y
∈
S
→
X
+
A
Y
∈
S