Metamath Proof Explorer


Theorem scmataddcl

Description: The sum of two scalar matrices is a scalar matrix. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatid.a A = N Mat R
scmatid.b B = Base A
scmatid.e E = Base R
scmatid.0 0 ˙ = 0 R
scmatid.s S = N ScMat R
Assertion scmataddcl N Fin R Ring X S Y S X + A Y S

Proof

Step Hyp Ref Expression
1 scmatid.a A = N Mat R
2 scmatid.b B = Base A
3 scmatid.e E = Base R
4 scmatid.0 0 ˙ = 0 R
5 scmatid.s S = N ScMat R
6 eqid 1 A = 1 A
7 eqid A = A
8 3 1 2 6 7 5 scmatscmid N Fin R Ring X S c E X = c A 1 A
9 8 3expa N Fin R Ring X S c E X = c A 1 A
10 9 adantrr N Fin R Ring X S Y S c E X = c A 1 A
11 3 1 2 6 7 5 scmatscmid N Fin R Ring Y S d E Y = d A 1 A
12 11 3expia N Fin R Ring Y S d E Y = d A 1 A
13 oveq12 X = c A 1 A Y = d A 1 A X + A Y = c A 1 A + A d A 1 A
14 13 adantl N Fin R Ring d E c E X = c A 1 A Y = d A 1 A X + A Y = c A 1 A + A d A 1 A
15 1 matlmod N Fin R Ring A LMod
16 15 ad2antrr N Fin R Ring d E c E A LMod
17 1 matsca2 N Fin R Ring R = Scalar A
18 17 fveq2d N Fin R Ring Base R = Base Scalar A
19 3 18 syl5eq N Fin R Ring E = Base Scalar A
20 19 eleq2d N Fin R Ring c E c Base Scalar A
21 20 biimpd N Fin R Ring c E c Base Scalar A
22 21 adantr N Fin R Ring d E c E c Base Scalar A
23 22 imp N Fin R Ring d E c E c Base Scalar A
24 19 eleq2d N Fin R Ring d E d Base Scalar A
25 24 biimpa N Fin R Ring d E d Base Scalar A
26 25 adantr N Fin R Ring d E c E d Base Scalar A
27 1 matring N Fin R Ring A Ring
28 2 6 ringidcl A Ring 1 A B
29 27 28 syl N Fin R Ring 1 A B
30 29 ad2antrr N Fin R Ring d E c E 1 A B
31 eqid + A = + A
32 eqid Scalar A = Scalar A
33 eqid Base Scalar A = Base Scalar A
34 eqid + Scalar A = + Scalar A
35 2 31 32 7 33 34 lmodvsdir A LMod c Base Scalar A d Base Scalar A 1 A B c + Scalar A d A 1 A = c A 1 A + A d A 1 A
36 16 23 26 30 35 syl13anc N Fin R Ring d E c E c + Scalar A d A 1 A = c A 1 A + A d A 1 A
37 36 eqcomd N Fin R Ring d E c E c A 1 A + A d A 1 A = c + Scalar A d A 1 A
38 simpll N Fin R Ring d E c E N Fin R Ring
39 17 eqcomd N Fin R Ring Scalar A = R
40 39 ad2antrr N Fin R Ring d E c E Scalar A = R
41 40 fveq2d N Fin R Ring d E c E + Scalar A = + R
42 41 oveqd N Fin R Ring d E c E c + Scalar A d = c + R d
43 ringgrp R Ring R Grp
44 43 adantl N Fin R Ring R Grp
45 44 ad2antrr N Fin R Ring d E c E R Grp
46 simpr N Fin R Ring d E c E c E
47 simplr N Fin R Ring d E c E d E
48 eqid + R = + R
49 3 48 grpcl R Grp c E d E c + R d E
50 45 46 47 49 syl3anc N Fin R Ring d E c E c + R d E
51 42 50 eqeltrd N Fin R Ring d E c E c + Scalar A d E
52 3 1 2 7 matvscl N Fin R Ring c + Scalar A d E 1 A B c + Scalar A d A 1 A B
53 38 51 30 52 syl12anc N Fin R Ring d E c E c + Scalar A d A 1 A B
54 oveq1 e = c + Scalar A d e A 1 A = c + Scalar A d A 1 A
55 54 eqeq2d e = c + Scalar A d c + Scalar A d A 1 A = e A 1 A c + Scalar A d A 1 A = c + Scalar A d A 1 A
56 55 adantl N Fin R Ring d E c E e = c + Scalar A d c + Scalar A d A 1 A = e A 1 A c + Scalar A d A 1 A = c + Scalar A d A 1 A
57 eqidd N Fin R Ring d E c E c + Scalar A d A 1 A = c + Scalar A d A 1 A
58 51 56 57 rspcedvd N Fin R Ring d E c E e E c + Scalar A d A 1 A = e A 1 A
59 3 1 2 6 7 5 scmatel N Fin R Ring c + Scalar A d A 1 A S c + Scalar A d A 1 A B e E c + Scalar A d A 1 A = e A 1 A
60 59 ad2antrr N Fin R Ring d E c E c + Scalar A d A 1 A S c + Scalar A d A 1 A B e E c + Scalar A d A 1 A = e A 1 A
61 53 58 60 mpbir2and N Fin R Ring d E c E c + Scalar A d A 1 A S
62 37 61 eqeltrd N Fin R Ring d E c E c A 1 A + A d A 1 A S
63 62 adantr N Fin R Ring d E c E X = c A 1 A Y = d A 1 A c A 1 A + A d A 1 A S
64 14 63 eqeltrd N Fin R Ring d E c E X = c A 1 A Y = d A 1 A X + A Y S
65 64 exp32 N Fin R Ring d E c E X = c A 1 A Y = d A 1 A X + A Y S
66 65 rexlimdva N Fin R Ring d E c E X = c A 1 A Y = d A 1 A X + A Y S
67 66 com23 N Fin R Ring d E Y = d A 1 A c E X = c A 1 A X + A Y S
68 67 rexlimdva N Fin R Ring d E Y = d A 1 A c E X = c A 1 A X + A Y S
69 12 68 syldc Y S N Fin R Ring c E X = c A 1 A X + A Y S
70 69 adantl X S Y S N Fin R Ring c E X = c A 1 A X + A Y S
71 70 impcom N Fin R Ring X S Y S c E X = c A 1 A X + A Y S
72 10 71 mpd N Fin R Ring X S Y S X + A Y S