Step |
Hyp |
Ref |
Expression |
1 |
|
scmatid.a |
|
2 |
|
scmatid.b |
|
3 |
|
scmatid.e |
|
4 |
|
scmatid.0 |
|
5 |
|
scmatid.s |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
3 1 2 6 7 5
|
scmatscmid |
|
9 |
8
|
3expa |
|
10 |
9
|
adantrr |
|
11 |
3 1 2 6 7 5
|
scmatscmid |
|
12 |
11
|
3expia |
|
13 |
|
oveq12 |
|
14 |
13
|
adantl |
|
15 |
1
|
matlmod |
|
16 |
15
|
ad2antrr |
|
17 |
1
|
matsca2 |
|
18 |
17
|
fveq2d |
|
19 |
3 18
|
eqtrid |
|
20 |
19
|
eleq2d |
|
21 |
20
|
biimpd |
|
22 |
21
|
adantr |
|
23 |
22
|
imp |
|
24 |
19
|
eleq2d |
|
25 |
24
|
biimpa |
|
26 |
25
|
adantr |
|
27 |
1
|
matring |
|
28 |
2 6
|
ringidcl |
|
29 |
27 28
|
syl |
|
30 |
29
|
ad2antrr |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
2 31 32 7 33 34
|
lmodvsdir |
|
36 |
16 23 26 30 35
|
syl13anc |
|
37 |
36
|
eqcomd |
|
38 |
|
simpll |
|
39 |
17
|
eqcomd |
|
40 |
39
|
ad2antrr |
|
41 |
40
|
fveq2d |
|
42 |
41
|
oveqd |
|
43 |
|
ringgrp |
|
44 |
43
|
adantl |
|
45 |
44
|
ad2antrr |
|
46 |
|
simpr |
|
47 |
|
simplr |
|
48 |
|
eqid |
|
49 |
3 48
|
grpcl |
|
50 |
45 46 47 49
|
syl3anc |
|
51 |
42 50
|
eqeltrd |
|
52 |
3 1 2 7
|
matvscl |
|
53 |
38 51 30 52
|
syl12anc |
|
54 |
|
oveq1 |
|
55 |
54
|
eqeq2d |
|
56 |
55
|
adantl |
|
57 |
|
eqidd |
|
58 |
51 56 57
|
rspcedvd |
|
59 |
3 1 2 6 7 5
|
scmatel |
|
60 |
59
|
ad2antrr |
|
61 |
53 58 60
|
mpbir2and |
|
62 |
37 61
|
eqeltrd |
|
63 |
62
|
adantr |
|
64 |
14 63
|
eqeltrd |
|
65 |
64
|
exp32 |
|
66 |
65
|
rexlimdva |
|
67 |
66
|
com23 |
|
68 |
67
|
rexlimdva |
|
69 |
12 68
|
syldc |
|
70 |
69
|
adantl |
|
71 |
70
|
impcom |
|
72 |
10 71
|
mpd |
|