| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvoveq1 |
|
| 2 |
1
|
oveq1d |
|
| 3 |
2
|
oveq2d |
|
| 4 |
|
rpre |
|
| 5 |
|
ssrab2 |
|
| 6 |
|
simprr |
|
| 7 |
5 6
|
sselid |
|
| 8 |
|
mucl |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
zcnd |
|
| 11 |
|
elfznn |
|
| 12 |
11
|
nnrpd |
|
| 13 |
12
|
ad2antrl |
|
| 14 |
7
|
nnrpd |
|
| 15 |
13 14
|
rpdivcld |
|
| 16 |
|
relogcl |
|
| 17 |
16
|
recnd |
|
| 18 |
15 17
|
syl |
|
| 19 |
18
|
sqcld |
|
| 20 |
10 19
|
mulcld |
|
| 21 |
3 4 20
|
dvdsflsumcom |
|
| 22 |
|
elfznn |
|
| 23 |
22
|
3ad2ant3 |
|
| 24 |
23
|
nncnd |
|
| 25 |
|
elfznn |
|
| 26 |
25
|
3ad2ant2 |
|
| 27 |
26
|
nncnd |
|
| 28 |
26
|
nnne0d |
|
| 29 |
24 27 28
|
divcan3d |
|
| 30 |
29
|
fveq2d |
|
| 31 |
30
|
oveq1d |
|
| 32 |
31
|
oveq2d |
|
| 33 |
32
|
2sumeq2dv |
|
| 34 |
21 33
|
eqtrd |
|
| 35 |
34
|
oveq1d |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
mpteq2ia |
|
| 38 |
|
eqid |
|
| 39 |
38
|
selberglem2 |
|
| 40 |
37 39
|
eqeltri |
|