Metamath Proof Explorer


Theorem selberglem3

Description: Lemma for selberg . Estimation of the left-hand side of logsqvma2 . (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion selberglem3 x+n=1xdy|ynμdlognd2x2logx𝑂1

Proof

Step Hyp Ref Expression
1 fvoveq1 n=dmlognd=logdmd
2 1 oveq1d n=dmlognd2=logdmd2
3 2 oveq2d n=dmμdlognd2=μdlogdmd2
4 rpre x+x
5 ssrab2 y|yn
6 simprr x+n1xdy|yndy|yn
7 5 6 sselid x+n1xdy|ynd
8 mucl dμd
9 7 8 syl x+n1xdy|ynμd
10 9 zcnd x+n1xdy|ynμd
11 elfznn n1xn
12 11 nnrpd n1xn+
13 12 ad2antrl x+n1xdy|ynn+
14 7 nnrpd x+n1xdy|ynd+
15 13 14 rpdivcld x+n1xdy|ynnd+
16 relogcl nd+lognd
17 16 recnd nd+lognd
18 15 17 syl x+n1xdy|ynlognd
19 18 sqcld x+n1xdy|ynlognd2
20 10 19 mulcld x+n1xdy|ynμdlognd2
21 3 4 20 dvdsflsumcom x+n=1xdy|ynμdlognd2=d=1xm=1xdμdlogdmd2
22 elfznn m1xdm
23 22 3ad2ant3 x+d1xm1xdm
24 23 nncnd x+d1xm1xdm
25 elfznn d1xd
26 25 3ad2ant2 x+d1xm1xdd
27 26 nncnd x+d1xm1xdd
28 26 nnne0d x+d1xm1xdd0
29 24 27 28 divcan3d x+d1xm1xddmd=m
30 29 fveq2d x+d1xm1xdlogdmd=logm
31 30 oveq1d x+d1xm1xdlogdmd2=logm2
32 31 oveq2d x+d1xm1xdμdlogdmd2=μdlogm2
33 32 2sumeq2dv x+d=1xm=1xdμdlogdmd2=d=1xm=1xdμdlogm2
34 21 33 eqtrd x+n=1xdy|ynμdlognd2=d=1xm=1xdμdlogm2
35 34 oveq1d x+n=1xdy|ynμdlognd2x=d=1xm=1xdμdlogm2x
36 35 oveq1d x+n=1xdy|ynμdlognd2x2logx=d=1xm=1xdμdlogm2x2logx
37 36 mpteq2ia x+n=1xdy|ynμdlognd2x2logx=x+d=1xm=1xdμdlogm2x2logx
38 eqid logxd2+2-2logxdd=logxd2+2-2logxdd
39 38 selberglem2 x+d=1xm=1xdμdlogm2x2logx𝑂1
40 37 39 eqeltri x+n=1xdy|ynμdlognd2x2logx𝑂1