Metamath Proof Explorer


Theorem seqpo

Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion seqpo RPoAF:AsFsRFs+1mnm+1FmRFn

Proof

Step Hyp Ref Expression
1 fveq2 p=m+1Fp=Fm+1
2 1 breq2d p=m+1FmRFpFmRFm+1
3 2 imbi2d p=m+1RPoAF:AsFsRFs+1mFmRFpRPoAF:AsFsRFs+1mFmRFm+1
4 fveq2 p=qFp=Fq
5 4 breq2d p=qFmRFpFmRFq
6 5 imbi2d p=qRPoAF:AsFsRFs+1mFmRFpRPoAF:AsFsRFs+1mFmRFq
7 fveq2 p=q+1Fp=Fq+1
8 7 breq2d p=q+1FmRFpFmRFq+1
9 8 imbi2d p=q+1RPoAF:AsFsRFs+1mFmRFpRPoAF:AsFsRFs+1mFmRFq+1
10 fveq2 p=nFp=Fn
11 10 breq2d p=nFmRFpFmRFn
12 11 imbi2d p=nRPoAF:AsFsRFs+1mFmRFpRPoAF:AsFsRFs+1mFmRFn
13 fveq2 s=mFs=Fm
14 fvoveq1 s=mFs+1=Fm+1
15 13 14 breq12d s=mFsRFs+1FmRFm+1
16 15 rspccva sFsRFs+1mFmRFm+1
17 16 adantl RPoAF:AsFsRFs+1mFmRFm+1
18 17 a1i m+1RPoAF:AsFsRFs+1mFmRFm+1
19 peano2nn mm+1
20 elnnuz m+1m+11
21 19 20 sylib mm+11
22 uztrn qm+1m+11q1
23 elnnuz qq1
24 22 23 sylibr qm+1m+11q
25 24 expcom m+11qm+1q
26 21 25 syl mqm+1q
27 26 imdistani mqm+1mq
28 fveq2 s=qFs=Fq
29 fvoveq1 s=qFs+1=Fq+1
30 28 29 breq12d s=qFsRFs+1FqRFq+1
31 30 rspccva sFsRFs+1qFqRFq+1
32 31 ad2ant2l RPoAF:AsFsRFs+1mqFqRFq+1
33 32 ex RPoAF:AsFsRFs+1mqFqRFq+1
34 ffvelcdm F:AmFmA
35 34 adantrr F:AmqFmA
36 ffvelcdm F:AqFqA
37 36 adantrl F:AmqFqA
38 peano2nn qq+1
39 ffvelcdm F:Aq+1Fq+1A
40 38 39 sylan2 F:AqFq+1A
41 40 adantrl F:AmqFq+1A
42 35 37 41 3jca F:AmqFmAFqAFq+1A
43 potr RPoAFmAFqAFq+1AFmRFqFqRFq+1FmRFq+1
44 43 expcomd RPoAFmAFqAFq+1AFqRFq+1FmRFqFmRFq+1
45 44 ex RPoAFmAFqAFq+1AFqRFq+1FmRFqFmRFq+1
46 42 45 syl5 RPoAF:AmqFqRFq+1FmRFqFmRFq+1
47 46 expdimp RPoAF:AmqFqRFq+1FmRFqFmRFq+1
48 47 adantr RPoAF:AsFsRFs+1mqFqRFq+1FmRFqFmRFq+1
49 33 48 mpdd RPoAF:AsFsRFs+1mqFmRFqFmRFq+1
50 27 49 syl5 RPoAF:AsFsRFs+1mqm+1FmRFqFmRFq+1
51 50 expdimp RPoAF:AsFsRFs+1mqm+1FmRFqFmRFq+1
52 51 anasss RPoAF:AsFsRFs+1mqm+1FmRFqFmRFq+1
53 52 com12 qm+1RPoAF:AsFsRFs+1mFmRFqFmRFq+1
54 53 a2d qm+1RPoAF:AsFsRFs+1mFmRFqRPoAF:AsFsRFs+1mFmRFq+1
55 3 6 9 12 18 54 uzind4 nm+1RPoAF:AsFsRFs+1mFmRFn
56 55 com12 RPoAF:AsFsRFs+1mnm+1FmRFn
57 56 ralrimiv RPoAF:AsFsRFs+1mnm+1FmRFn
58 57 anassrs RPoAF:AsFsRFs+1mnm+1FmRFn
59 58 ralrimiva RPoAF:AsFsRFs+1mnm+1FmRFn
60 59 ex RPoAF:AsFsRFs+1mnm+1FmRFn
61 fvoveq1 m=sm+1=s+1
62 fveq2 m=sFm=Fs
63 62 breq1d m=sFmRFnFsRFn
64 61 63 raleqbidv m=snm+1FmRFnns+1FsRFn
65 64 rspcv smnm+1FmRFnns+1FsRFn
66 65 imdistanri mnm+1FmRFnsns+1FsRFns
67 peano2nn ss+1
68 67 nnzd ss+1
69 uzid s+1s+1s+1
70 68 69 syl ss+1s+1
71 fveq2 n=s+1Fn=Fs+1
72 71 breq2d n=s+1FsRFnFsRFs+1
73 72 rspccva ns+1FsRFns+1s+1FsRFs+1
74 70 73 sylan2 ns+1FsRFnsFsRFs+1
75 66 74 syl mnm+1FmRFnsFsRFs+1
76 75 ralrimiva mnm+1FmRFnsFsRFs+1
77 60 76 impbid1 RPoAF:AsFsRFs+1mnm+1FmRFn