Metamath Proof Explorer


Theorem sgn3da

Description: A conditional containing a signum is true if it is true in all three possible cases. (Contributed by Thierry Arnoux, 1-Oct-2018)

Ref Expression
Hypotheses sgn3da.0 φA*
sgn3da.1 sgnA=0ψχ
sgn3da.2 sgnA=1ψθ
sgn3da.3 sgnA=1ψτ
sgn3da.4 φA=0χ
sgn3da.5 φ0<Aθ
sgn3da.6 φA<0τ
Assertion sgn3da φψ

Proof

Step Hyp Ref Expression
1 sgn3da.0 φA*
2 sgn3da.1 sgnA=0ψχ
3 sgn3da.2 sgnA=1ψθ
4 sgn3da.3 sgnA=1ψτ
5 sgn3da.4 φA=0χ
6 sgn3da.5 φ0<Aθ
7 sgn3da.6 φA<0τ
8 sgnval A*sgnA=ifA=00ifA<011
9 1 8 syl φsgnA=ifA=00ifA<011
10 9 eqeq2d φ0=sgnA0=ifA=00ifA<011
11 10 pm5.32i φ0=sgnAφ0=ifA=00ifA<011
12 2 eqcoms 0=sgnAψχ
13 12 bicomd 0=sgnAχψ
14 13 adantl φ0=sgnAχψ
15 11 14 sylbir φ0=ifA=00ifA<011χψ
16 15 expcom 0=ifA=00ifA<011φχψ
17 16 pm5.74d 0=ifA=00ifA<011φχφψ
18 9 eqeq2d φifA<011=sgnAifA<011=ifA=00ifA<011
19 18 pm5.32i φifA<011=sgnAφifA<011=ifA=00ifA<011
20 eqeq1 1=ifA<0111=sgnAifA<011=sgnA
21 20 imbi1d 1=ifA<0111=sgnAA<0τ¬A<0θψifA<011=sgnAA<0τ¬A<0θψ
22 eqeq1 1=ifA<0111=sgnAifA<011=sgnA
23 22 imbi1d 1=ifA<0111=sgnAA<0τ¬A<0θψifA<011=sgnAA<0τ¬A<0θψ
24 7 adantr φA<0A<0ττ
25 simp2 φA<0τA<0τ
26 25 3expia φA<0τA<0τ
27 24 26 impbida φA<0A<0ττ
28 pm3.24 ¬A<0¬A<0
29 28 pm2.21i A<0¬A<0θ
30 29 adantl φA<0¬A<0θ
31 30 expr φA<0¬A<0θ
32 tbtru ¬A<0θ¬A<0θ
33 31 32 sylib φA<0¬A<0θ
34 27 33 anbi12d φA<0A<0τ¬A<0θτ
35 ancom ττ
36 truan ττ
37 35 36 bitri ττ
38 34 37 bitrdi φA<0A<0τ¬A<0θτ
39 38 3adant3 φA<01=sgnAA<0τ¬A<0θτ
40 4 eqcoms 1=sgnAψτ
41 40 3ad2ant3 φA<01=sgnAψτ
42 39 41 bitr4d φA<01=sgnAA<0τ¬A<0θψ
43 42 3expia φA<01=sgnAA<0τ¬A<0θψ
44 7 3adant2 φ¬A<0A<0τ
45 44 3expia φ¬A<0A<0τ
46 tbtru A<0τA<0τ
47 45 46 sylib φ¬A<0A<0τ
48 pm3.35 ¬A<0¬A<0θθ
49 48 adantll φ¬A<0¬A<0θθ
50 simp2 φ¬A<0θ¬A<0θ
51 50 3expia φ¬A<0θ¬A<0θ
52 49 51 impbida φ¬A<0¬A<0θθ
53 47 52 anbi12d φ¬A<0A<0τ¬A<0θθ
54 truan θθ
55 53 54 bitrdi φ¬A<0A<0τ¬A<0θθ
56 55 3adant3 φ¬A<01=sgnAA<0τ¬A<0θθ
57 3 eqcoms 1=sgnAψθ
58 57 3ad2ant3 φ¬A<01=sgnAψθ
59 56 58 bitr4d φ¬A<01=sgnAA<0τ¬A<0θψ
60 59 3expia φ¬A<01=sgnAA<0τ¬A<0θψ
61 21 23 43 60 ifbothda φifA<011=sgnAA<0τ¬A<0θψ
62 61 imp φifA<011=sgnAA<0τ¬A<0θψ
63 19 62 sylbir φifA<011=ifA=00ifA<011A<0τ¬A<0θψ
64 63 expcom ifA<011=ifA=00ifA<011φA<0τ¬A<0θψ
65 64 pm5.74d ifA<011=ifA=00ifA<011φA<0τ¬A<0θφψ
66 5 expcom A=0φχ
67 66 adantl A=0φχ
68 7 ex φA<0τ
69 68 adantr φ¬A=0A<0τ
70 simp1 φ¬A=0¬A<0φ
71 df-ne A0¬A=0
72 0xr 0*
73 xrlttri2 A*0*A0A<00<A
74 1 72 73 sylancl φA0A<00<A
75 71 74 bitr3id φ¬A=0A<00<A
76 75 biimpa φ¬A=0A<00<A
77 76 ord φ¬A=0¬A<00<A
78 77 3impia φ¬A=0¬A<00<A
79 70 78 6 syl2anc φ¬A=0¬A<0θ
80 79 3expia φ¬A=0¬A<0θ
81 69 80 jca φ¬A=0A<0τ¬A<0θ
82 81 expcom ¬A=0φA<0τ¬A<0θ
83 82 adantl ¬A=0φA<0τ¬A<0θ
84 17 65 67 83 ifbothda φψ
85 84 mptru φψ