Metamath Proof Explorer


Theorem sharhght

Description: Let A B C be a triangle, and let D lie on the line A B . Then (doubled) areas of triangles A D C and C D B relate as lengths of corresponding bases A D and D B . (Contributed by Saveliy Skresanov, 23-Sep-2017)

Ref Expression
Hypotheses sharhght.sigar G=x,yxy
sharhght.a φABC
sharhght.b φDADGBD=0
Assertion sharhght φCAGDABD=CBGDBAD

Proof

Step Hyp Ref Expression
1 sharhght.sigar G=x,yxy
2 sharhght.a φABC
3 sharhght.b φDADGBD=0
4 2 simp3d φC
5 2 simp1d φA
6 4 5 subcld φCA
7 6 adantr φB=DCA
8 3 simpld φD
9 8 5 subcld φDA
10 9 adantr φB=DDA
11 1 sigarim CADACAGDA
12 7 10 11 syl2anc φB=DCAGDA
13 12 recnd φB=DCAGDA
14 13 mul01d φB=DCAGDA0=0
15 2 simp2d φB
16 15 adantr φB=DB
17 simpr φB=DB=D
18 16 17 subeq0bd φB=DBD=0
19 18 oveq2d φB=DCAGDABD=CAGDA0
20 4 15 subcld φCB
21 20 adantr φB=DCB
22 8 15 subcld φDB
23 22 adantr φB=DDB
24 1 sigarval CBDBCBGDB=CBDB
25 21 23 24 syl2anc φB=DCBGDB=CBDB
26 8 adantr φB=DD
27 17 eqcomd φB=DD=B
28 26 27 subeq0bd φB=DDB=0
29 28 oveq2d φB=DCBDB=CB0
30 21 cjcld φB=DCB
31 30 mul01d φB=DCB0=0
32 29 31 eqtrd φB=DCBDB=0
33 32 fveq2d φB=DCBDB=0
34 0red φB=D0
35 34 reim0d φB=D0=0
36 25 33 35 3eqtrd φB=DCBGDB=0
37 36 oveq1d φB=DCBGDBAD=0AD
38 5 adantr φB=DA
39 38 26 subcld φB=DAD
40 39 mul02d φB=D0AD=0
41 37 40 eqtrd φB=DCBGDBAD=0
42 14 19 41 3eqtr4d φB=DCAGDABD=CBGDBAD
43 4 adantr φ¬B=DC
44 15 adantr φ¬B=DB
45 5 adantr φ¬B=DA
46 43 44 45 npncand φ¬B=DCB+B-A=CA
47 46 oveq1d φ¬B=DCB+B-AGDA=CAGDA
48 43 44 subcld φ¬B=DCB
49 9 adantr φ¬B=DDA
50 44 45 subcld φ¬B=DBA
51 1 sigaraf CBDABACB+B-AGDA=CBGDA+BAGDA
52 48 49 50 51 syl3anc φ¬B=DCB+B-AGDA=CBGDA+BAGDA
53 47 52 eqtr3d φ¬B=DCAGDA=CBGDA+BAGDA
54 3 simprd φADGBD=0
55 54 adantr φ¬B=DADGBD=0
56 8 adantr φ¬B=DD
57 1 sigarperm ABDADGBD=BAGDA
58 45 44 56 57 syl3anc φ¬B=DADGBD=BAGDA
59 55 58 eqtr3d φ¬B=D0=BAGDA
60 59 oveq2d φ¬B=DCBGDA+0=CBGDA+BAGDA
61 1 sigarim CBDACBGDA
62 48 49 61 syl2anc φ¬B=DCBGDA
63 62 recnd φ¬B=DCBGDA
64 63 addridd φ¬B=DCBGDA+0=CBGDA
65 53 60 64 3eqtr2d φ¬B=DCAGDA=CBGDA
66 44 56 negsubdi2d φ¬B=DBD=DB
67 66 eqcomd φ¬B=DDB=BD
68 67 oveq1d φ¬B=DDBBD=BDBD
69 44 56 subcld φ¬B=DBD
70 simpr φ¬B=D¬B=D
71 70 neqned φ¬B=DBD
72 44 56 71 subne0d φ¬B=DBD0
73 69 69 72 divnegd φ¬B=DBDBD=BDBD
74 69 72 dividd φ¬B=DBDBD=1
75 74 negeqd φ¬B=DBDBD=1
76 68 73 75 3eqtr2d φ¬B=DDBBD=1
77 76 oveq1d φ¬B=DDBBDAD=-1AD
78 45 56 subcld φ¬B=DAD
79 78 mulm1d φ¬B=D-1AD=AD
80 45 56 negsubdi2d φ¬B=DAD=DA
81 77 79 80 3eqtrd φ¬B=DDBBDAD=DA
82 56 44 subcld φ¬B=DDB
83 82 69 78 72 div32d φ¬B=DDBBDAD=DBADBD
84 81 83 eqtr3d φ¬B=DDA=DBADBD
85 84 oveq2d φ¬B=DCBGDA=CBGDBADBD
86 56 45 44 3jca φ¬B=DDAB
87 1 86 70 55 sigardiv φ¬B=DADBD
88 1 sigarls CBDBADBDCBGDBADBD=CBGDBADBD
89 48 82 87 88 syl3anc φ¬B=DCBGDBADBD=CBGDBADBD
90 65 85 89 3eqtrd φ¬B=DCAGDA=CBGDBADBD
91 90 oveq1d φ¬B=DCAGDABD=CBGDBADBDBD
92 1 sigarim CBDBCBGDB
93 92 recnd CBDBCBGDB
94 48 82 93 syl2anc φ¬B=DCBGDB
95 78 69 72 divcld φ¬B=DADBD
96 94 95 69 mulassd φ¬B=DCBGDBADBDBD=CBGDBADBDBD
97 78 69 72 divcan1d φ¬B=DADBDBD=AD
98 97 oveq2d φ¬B=DCBGDBADBDBD=CBGDBAD
99 91 96 98 3eqtrd φ¬B=DCAGDABD=CBGDBAD
100 42 99 pm2.61dan φCAGDABD=CBGDBAD