Metamath Proof Explorer


Theorem signsvtp

Description: Adding a letter of the same sign as the highest coefficient does not change the sign. (Contributed by Thierry Arnoux, 12-Oct-2018)

Ref Expression
Hypotheses signsv.p ˙=a101,b101ifb=0ab
signsv.w W=Basendx101+ndx˙
signsv.t T=fWordn0..^fWi=0nsgnfi
signsv.v V=fWordj1..^fifTfjTfj110
signsvf.e φEWord
signsvf.0 φE00
signsvf.f φF=E++⟨“A”⟩
signsvf.a φA
signsvf.n N=E
signsvt.b B=TEN1
Assertion signsvtp φ0<ABVF=VE

Proof

Step Hyp Ref Expression
1 signsv.p ˙=a101,b101ifb=0ab
2 signsv.w W=Basendx101+ndx˙
3 signsv.t T=fWordn0..^fWi=0nsgnfi
4 signsv.v V=fWordj1..^fifTfjTfj110
5 signsvf.e φEWord
6 signsvf.0 φE00
7 signsvf.f φF=E++⟨“A”⟩
8 signsvf.a φA
9 signsvf.n N=E
10 signsvt.b B=TEN1
11 7 fveq2d φVF=VE++⟨“A”⟩
12 1 2 3 4 signsvfn EWordE00AVE++⟨“A”⟩=VE+ifTEE1A<010
13 5 6 8 12 syl21anc φVE++⟨“A”⟩=VE+ifTEE1A<010
14 11 13 eqtrd φVF=VE+ifTEE1A<010
15 14 adantr φ0<ABVF=VE+ifTEE1A<010
16 0red φ0<AB0
17 5 adantr φ0<ABEWord
18 17 eldifad φ0<ABEWord
19 1 2 3 4 signstf EWordTEWord
20 wrdf TEWordTE:0..^TE
21 18 19 20 3syl φ0<ABTE:0..^TE
22 eldifsn EWordEWordE
23 5 22 sylib φEWordE
24 23 adantr φ0<ABEWordE
25 lennncl EWordEE
26 fzo0end EE10..^E
27 24 25 26 3syl φ0<ABE10..^E
28 1 2 3 4 signstlen EWordTE=E
29 18 28 syl φ0<ABTE=E
30 29 oveq2d φ0<AB0..^TE=0..^E
31 27 30 eleqtrrd φ0<ABE10..^TE
32 21 31 ffvelcdmd φ0<ABTEE1
33 8 adantr φ0<ABA
34 32 33 remulcld φ0<ABTEE1A
35 simpr φ0<AB0<AB
36 9 oveq1i N1=E1
37 36 fveq2i TEN1=TEE1
38 10 37 eqtri B=TEE1
39 38 32 eqeltrid φ0<ABB
40 39 recnd φ0<ABB
41 33 recnd φ0<ABA
42 40 41 mulcomd φ0<ABBA=AB
43 35 42 breqtrrd φ0<AB0<BA
44 38 oveq1i BA=TEE1A
45 43 44 breqtrdi φ0<AB0<TEE1A
46 16 34 45 ltnsymd φ0<AB¬TEE1A<0
47 46 iffalsed φ0<ABifTEE1A<010=0
48 47 oveq2d φ0<ABVE+ifTEE1A<010=VE+0
49 1 2 3 4 signsvvf V:Word0
50 49 a1i φ0<ABV:Word0
51 50 18 ffvelcdmd φ0<ABVE0
52 51 nn0cnd φ0<ABVE
53 52 addridd φ0<ABVE+0=VE
54 15 48 53 3eqtrd φ0<ABVF=VE