Metamath Proof Explorer


Theorem slesolex

Description: Every system of linear equations represented by a matrix with a unit as determinant has a solution. (Contributed by AV, 11-Feb-2019) (Revised by AV, 28-Feb-2019)

Ref Expression
Hypotheses slesolex.a A=NMatR
slesolex.b B=BaseA
slesolex.v V=BaseRN
slesolex.x ·˙=RmaVecMulNN
slesolex.d D=NmaDetR
Assertion slesolex NRCRingXBYVDXUnitRzVX·˙z=Y

Proof

Step Hyp Ref Expression
1 slesolex.a A=NMatR
2 slesolex.b B=BaseA
3 slesolex.v V=BaseRN
4 slesolex.x ·˙=RmaVecMulNN
5 slesolex.d D=NmaDetR
6 eqid BaseR=BaseR
7 eqid R=R
8 crngring RCRingRRing
9 8 adantl NRCRingRRing
10 9 3ad2ant1 NRCRingXBYVDXUnitRRRing
11 1 2 matrcl XBNFinRV
12 11 simpld XBNFin
13 12 adantr XBYVNFin
14 13 3ad2ant2 NRCRingXBYVDXUnitRNFin
15 9 13 anim12ci NRCRingXBYVNFinRRing
16 15 3adant3 NRCRingXBYVDXUnitRNFinRRing
17 1 matring NFinRRingARing
18 16 17 syl NRCRingXBYVDXUnitRARing
19 eqid UnitA=UnitA
20 eqid UnitR=UnitR
21 1 5 2 19 20 matunit RCRingXBXUnitADXUnitR
22 21 bicomd RCRingXBDXUnitRXUnitA
23 22 ad2ant2lr NRCRingXBYVDXUnitRXUnitA
24 23 biimp3a NRCRingXBYVDXUnitRXUnitA
25 eqid invrA=invrA
26 eqid BaseA=BaseA
27 19 25 26 ringinvcl ARingXUnitAinvrAXBaseA
28 18 24 27 syl2anc NRCRingXBYVDXUnitRinvrAXBaseA
29 3 eleq2i YVYBaseRN
30 29 biimpi YVYBaseRN
31 30 adantl XBYVYBaseRN
32 31 3ad2ant2 NRCRingXBYVDXUnitRYBaseRN
33 1 4 6 7 10 14 28 32 mavmulcl NRCRingXBYVDXUnitRinvrAX·˙YBaseRN
34 33 3 eleqtrrdi NRCRingXBYVDXUnitRinvrAX·˙YV
35 1 2 3 4 5 25 slesolinvbi NRCRingXBYVDXUnitRX·˙z=Yz=invrAX·˙Y
36 35 adantr NRCRingXBYVDXUnitRNRCRingXBYVDXUnitRX·˙z=Yz=invrAX·˙Y
37 36 biimprd NRCRingXBYVDXUnitRNRCRingXBYVDXUnitRz=invrAX·˙YX·˙z=Y
38 37 impancom NRCRingXBYVDXUnitRz=invrAX·˙YNRCRingXBYVDXUnitRX·˙z=Y
39 34 38 rspcimedv NRCRingXBYVDXUnitRNRCRingXBYVDXUnitRzVX·˙z=Y
40 39 pm2.43i NRCRingXBYVDXUnitRzVX·˙z=Y