| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slesolex.a |  | 
						
							| 2 |  | slesolex.b |  | 
						
							| 3 |  | slesolex.v |  | 
						
							| 4 |  | slesolex.x |  | 
						
							| 5 |  | slesolex.d |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | crngring |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 | 9 | 3ad2ant1 |  | 
						
							| 11 | 1 2 | matrcl |  | 
						
							| 12 | 11 | simpld |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 | 13 | 3ad2ant2 |  | 
						
							| 15 | 9 13 | anim12ci |  | 
						
							| 16 | 15 | 3adant3 |  | 
						
							| 17 | 1 | matring |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 1 5 2 19 20 | matunit |  | 
						
							| 22 | 21 | bicomd |  | 
						
							| 23 | 22 | ad2ant2lr |  | 
						
							| 24 | 23 | biimp3a |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 19 25 26 | ringinvcl |  | 
						
							| 28 | 18 24 27 | syl2anc |  | 
						
							| 29 | 3 | eleq2i |  | 
						
							| 30 | 29 | biimpi |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 31 | 3ad2ant2 |  | 
						
							| 33 | 1 4 6 7 10 14 28 32 | mavmulcl |  | 
						
							| 34 | 33 3 | eleqtrrdi |  | 
						
							| 35 | 1 2 3 4 5 25 | slesolinvbi |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 36 | biimprd |  | 
						
							| 38 | 37 | impancom |  | 
						
							| 39 | 34 38 | rspcimedv |  | 
						
							| 40 | 39 | pm2.43i |  |