Metamath Proof Explorer


Theorem sqgcd

Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion sqgcd MNMgcdN2=M2gcdN2

Proof

Step Hyp Ref Expression
1 gcdnncl MNMgcdN
2 1 nnsqcld MNMgcdN2
3 2 nncnd MNMgcdN2
4 3 mulridd MNMgcdN21=MgcdN2
5 nnsqcl MM2
6 5 nnzd MM2
7 6 adantr MNM2
8 nnsqcl NN2
9 8 nnzd NN2
10 9 adantl MNN2
11 nnz MM
12 nnz NN
13 gcddvds MNMgcdNMMgcdNN
14 11 12 13 syl2an MNMgcdNMMgcdNN
15 14 simpld MNMgcdNM
16 1 nnzd MNMgcdN
17 11 adantr MNM
18 dvdssqim MgcdNMMgcdNMMgcdN2M2
19 16 17 18 syl2anc MNMgcdNMMgcdN2M2
20 15 19 mpd MNMgcdN2M2
21 14 simprd MNMgcdNN
22 12 adantl MNN
23 dvdssqim MgcdNNMgcdNNMgcdN2N2
24 16 22 23 syl2anc MNMgcdNNMgcdN2N2
25 21 24 mpd MNMgcdN2N2
26 gcddiv M2N2MgcdN2MgcdN2M2MgcdN2N2M2gcdN2MgcdN2=M2MgcdN2gcdN2MgcdN2
27 7 10 2 20 25 26 syl32anc MNM2gcdN2MgcdN2=M2MgcdN2gcdN2MgcdN2
28 nncn MM
29 28 adantr MNM
30 1 nncnd MNMgcdN
31 1 nnne0d MNMgcdN0
32 29 30 31 sqdivd MNMMgcdN2=M2MgcdN2
33 nncn NN
34 33 adantl MNN
35 34 30 31 sqdivd MNNMgcdN2=N2MgcdN2
36 32 35 oveq12d MNMMgcdN2gcdNMgcdN2=M2MgcdN2gcdN2MgcdN2
37 gcddiv MNMgcdNMgcdNMMgcdNNMgcdNMgcdN=MMgcdNgcdNMgcdN
38 17 22 1 14 37 syl31anc MNMgcdNMgcdN=MMgcdNgcdNMgcdN
39 30 31 dividd MNMgcdNMgcdN=1
40 38 39 eqtr3d MNMMgcdNgcdNMgcdN=1
41 dvdsval2 MgcdNMgcdN0MMgcdNMMMgcdN
42 16 31 17 41 syl3anc MNMgcdNMMMgcdN
43 15 42 mpbid MNMMgcdN
44 nnre MM
45 44 adantr MNM
46 1 nnred MNMgcdN
47 nngt0 M0<M
48 47 adantr MN0<M
49 1 nngt0d MN0<MgcdN
50 45 46 48 49 divgt0d MN0<MMgcdN
51 elnnz MMgcdNMMgcdN0<MMgcdN
52 43 50 51 sylanbrc MNMMgcdN
53 dvdsval2 MgcdNMgcdN0NMgcdNNNMgcdN
54 16 31 22 53 syl3anc MNMgcdNNNMgcdN
55 21 54 mpbid MNNMgcdN
56 nnre NN
57 56 adantl MNN
58 nngt0 N0<N
59 58 adantl MN0<N
60 57 46 59 49 divgt0d MN0<NMgcdN
61 elnnz NMgcdNNMgcdN0<NMgcdN
62 55 60 61 sylanbrc MNNMgcdN
63 2nn 2
64 rppwr MMgcdNNMgcdN2MMgcdNgcdNMgcdN=1MMgcdN2gcdNMgcdN2=1
65 63 64 mp3an3 MMgcdNNMgcdNMMgcdNgcdNMgcdN=1MMgcdN2gcdNMgcdN2=1
66 52 62 65 syl2anc MNMMgcdNgcdNMgcdN=1MMgcdN2gcdNMgcdN2=1
67 40 66 mpd MNMMgcdN2gcdNMgcdN2=1
68 27 36 67 3eqtr2d MNM2gcdN2MgcdN2=1
69 6 9 anim12i MNM2N2
70 5 nnne0d MM20
71 70 neneqd M¬M2=0
72 71 intnanrd M¬M2=0N2=0
73 72 adantr MN¬M2=0N2=0
74 gcdn0cl M2N2¬M2=0N2=0M2gcdN2
75 69 73 74 syl2anc MNM2gcdN2
76 75 nncnd MNM2gcdN2
77 2 nnne0d MNMgcdN20
78 ax-1cn 1
79 divmul M2gcdN21MgcdN2MgcdN20M2gcdN2MgcdN2=1MgcdN21=M2gcdN2
80 78 79 mp3an2 M2gcdN2MgcdN2MgcdN20M2gcdN2MgcdN2=1MgcdN21=M2gcdN2
81 76 3 77 80 syl12anc MNM2gcdN2MgcdN2=1MgcdN21=M2gcdN2
82 68 81 mpbid MNMgcdN21=M2gcdN2
83 4 82 eqtr3d MNMgcdN2=M2gcdN2