Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sralmod.a | |
|
Assertion | sralmod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sralmod.a | |
|
2 | 1 | a1i | |
3 | eqid | |
|
4 | 3 | subrgss | |
5 | 2 4 | srabase | |
6 | 2 4 | sraaddg | |
7 | 2 4 | srasca | |
8 | 2 4 | sravsca | |
9 | eqid | |
|
10 | 9 3 | ressbas | |
11 | eqid | |
|
12 | 9 11 | ressplusg | |
13 | eqid | |
|
14 | 9 13 | ressmulr | |
15 | eqid | |
|
16 | 9 15 | subrg1 | |
17 | 9 | subrgring | |
18 | subrgrcl | |
|
19 | ringgrp | |
|
20 | 18 19 | syl | |
21 | eqidd | |
|
22 | 6 | oveqdr | |
23 | 21 5 22 | grppropd | |
24 | 20 23 | mpbid | |
25 | 18 | 3ad2ant1 | |
26 | elinel2 | |
|
27 | 26 | 3ad2ant2 | |
28 | simp3 | |
|
29 | 3 13 | ringcl | |
30 | 25 27 28 29 | syl3anc | |
31 | 18 | adantr | |
32 | simpr1 | |
|
33 | 32 | elin2d | |
34 | simpr2 | |
|
35 | simpr3 | |
|
36 | 3 11 13 | ringdi | |
37 | 31 33 34 35 36 | syl13anc | |
38 | 18 | adantr | |
39 | simpr1 | |
|
40 | 39 | elin2d | |
41 | simpr2 | |
|
42 | 41 | elin2d | |
43 | simpr3 | |
|
44 | 3 11 13 | ringdir | |
45 | 38 40 42 43 44 | syl13anc | |
46 | 3 13 | ringass | |
47 | 38 40 42 43 46 | syl13anc | |
48 | 3 13 15 | ringlidm | |
49 | 18 48 | sylan | |
50 | 5 6 7 8 10 12 14 16 17 24 30 37 45 47 49 | islmodd | |