Metamath Proof Explorer


Theorem sralmod

Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis sralmod.a A=subringAlgWS
Assertion sralmod SSubRingWALMod

Proof

Step Hyp Ref Expression
1 sralmod.a A=subringAlgWS
2 1 a1i SSubRingWA=subringAlgWS
3 eqid BaseW=BaseW
4 3 subrgss SSubRingWSBaseW
5 2 4 srabase SSubRingWBaseW=BaseA
6 2 4 sraaddg SSubRingW+W=+A
7 2 4 srasca SSubRingWW𝑠S=ScalarA
8 2 4 sravsca SSubRingWW=A
9 eqid W𝑠S=W𝑠S
10 9 3 ressbas SSubRingWSBaseW=BaseW𝑠S
11 eqid +W=+W
12 9 11 ressplusg SSubRingW+W=+W𝑠S
13 eqid W=W
14 9 13 ressmulr SSubRingWW=W𝑠S
15 eqid 1W=1W
16 9 15 subrg1 SSubRingW1W=1W𝑠S
17 9 subrgring SSubRingWW𝑠SRing
18 subrgrcl SSubRingWWRing
19 ringgrp WRingWGrp
20 18 19 syl SSubRingWWGrp
21 eqidd SSubRingWBaseW=BaseW
22 6 oveqdr SSubRingWxBaseWyBaseWx+Wy=x+Ay
23 21 5 22 grppropd SSubRingWWGrpAGrp
24 20 23 mpbid SSubRingWAGrp
25 18 3ad2ant1 SSubRingWxSBaseWyBaseWWRing
26 elinel2 xSBaseWxBaseW
27 26 3ad2ant2 SSubRingWxSBaseWyBaseWxBaseW
28 simp3 SSubRingWxSBaseWyBaseWyBaseW
29 3 13 ringcl WRingxBaseWyBaseWxWyBaseW
30 25 27 28 29 syl3anc SSubRingWxSBaseWyBaseWxWyBaseW
31 18 adantr SSubRingWxSBaseWyBaseWzBaseWWRing
32 simpr1 SSubRingWxSBaseWyBaseWzBaseWxSBaseW
33 32 elin2d SSubRingWxSBaseWyBaseWzBaseWxBaseW
34 simpr2 SSubRingWxSBaseWyBaseWzBaseWyBaseW
35 simpr3 SSubRingWxSBaseWyBaseWzBaseWzBaseW
36 3 11 13 ringdi WRingxBaseWyBaseWzBaseWxWy+Wz=xWy+WxWz
37 31 33 34 35 36 syl13anc SSubRingWxSBaseWyBaseWzBaseWxWy+Wz=xWy+WxWz
38 18 adantr SSubRingWxSBaseWySBaseWzBaseWWRing
39 simpr1 SSubRingWxSBaseWySBaseWzBaseWxSBaseW
40 39 elin2d SSubRingWxSBaseWySBaseWzBaseWxBaseW
41 simpr2 SSubRingWxSBaseWySBaseWzBaseWySBaseW
42 41 elin2d SSubRingWxSBaseWySBaseWzBaseWyBaseW
43 simpr3 SSubRingWxSBaseWySBaseWzBaseWzBaseW
44 3 11 13 ringdir WRingxBaseWyBaseWzBaseWx+WyWz=xWz+WyWz
45 38 40 42 43 44 syl13anc SSubRingWxSBaseWySBaseWzBaseWx+WyWz=xWz+WyWz
46 3 13 ringass WRingxBaseWyBaseWzBaseWxWyWz=xWyWz
47 38 40 42 43 46 syl13anc SSubRingWxSBaseWySBaseWzBaseWxWyWz=xWyWz
48 3 13 15 ringlidm WRingxBaseW1WWx=x
49 18 48 sylan SSubRingWxBaseW1WWx=x
50 5 6 7 8 10 12 14 16 17 24 30 37 45 47 49 islmodd SSubRingWALMod