Metamath Proof Explorer


Theorem ssfzo12bi

Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018)

Ref Expression
Assertion ssfzo12bi K L M N K < L K ..^ L M ..^ N M K L N

Proof

Step Hyp Ref Expression
1 df-3an K L K < L K L K < L
2 1 biimpri K L K < L K L K < L
3 2 3adant2 K L M N K < L K L K < L
4 ssfzo12 K L K < L K ..^ L M ..^ N M K L N
5 3 4 syl K L M N K < L K ..^ L M ..^ N M K L N
6 elfzo2 x K ..^ L x K L x < L
7 eluz2 x K K x K x
8 simprrl x K L M N M
9 8 adantr x K L M N M K K x M
10 simpll x K L M N M K K x x
11 zre M M
12 11 adantr M N M
13 12 adantl K L M N M
14 zre K K
15 14 adantr K L K
16 15 adantr K L M N K
17 zre x x
18 17 adantr x K L M N x
19 letr M K x M K K x M x
20 13 16 18 19 syl2an23an x K L M N M K K x M x
21 20 imp x K L M N M K K x M x
22 9 10 21 3jca x K L M N M K K x M x M x
23 22 exp31 x K L M N M K K x M x M x
24 23 com23 x M K K x K L M N M x M x
25 24 expdimp x M K K x K L M N M x M x
26 25 impancom x K x M K K L M N M x M x
27 26 com13 K L M N M K x K x M x M x
28 27 3adant3 K L M N K < L M K x K x M x M x
29 28 com12 M K K L M N K < L x K x M x M x
30 29 adantr M K L N K L M N K < L x K x M x M x
31 30 impcom K L M N K < L M K L N x K x M x M x
32 31 com12 x K x K L M N K < L M K L N M x M x
33 32 adantr x K x x < L K L M N K < L M K L N M x M x
34 33 imp x K x x < L K L M N K < L M K L N M x M x
35 eluz2 x M M x M x
36 34 35 sylibr x K x x < L K L M N K < L M K L N x M
37 simpl2r K L M N K < L M K L N N
38 37 adantl x K x x < L K L M N K < L M K L N N
39 17 adantl K L M N x x
40 zre L L
41 40 ad3antlr K L M N x L
42 zre N N
43 42 adantl M N N
44 43 adantl K L M N N
45 44 adantr K L M N x N
46 ltletr x L N x < L L N x < N
47 39 41 45 46 syl3anc K L M N x x < L L N x < N
48 47 ex K L M N x x < L L N x < N
49 48 com23 K L M N x < L L N x x < N
50 49 3adant3 K L M N K < L x < L L N x x < N
51 50 expcomd K L M N K < L L N x < L x x < N
52 51 adantld K L M N K < L M K L N x < L x x < N
53 52 imp K L M N K < L M K L N x < L x x < N
54 53 com13 x x < L K L M N K < L M K L N x < N
55 54 adantr x K x x < L K L M N K < L M K L N x < N
56 55 imp x K x x < L K L M N K < L M K L N x < N
57 56 imp x K x x < L K L M N K < L M K L N x < N
58 elfzo2 x M ..^ N x M N x < N
59 36 38 57 58 syl3anbrc x K x x < L K L M N K < L M K L N x M ..^ N
60 59 exp31 x K x x < L K L M N K < L M K L N x M ..^ N
61 60 3adant1 K x K x x < L K L M N K < L M K L N x M ..^ N
62 7 61 sylbi x K x < L K L M N K < L M K L N x M ..^ N
63 62 imp x K x < L K L M N K < L M K L N x M ..^ N
64 63 3adant2 x K L x < L K L M N K < L M K L N x M ..^ N
65 6 64 sylbi x K ..^ L K L M N K < L M K L N x M ..^ N
66 65 com12 K L M N K < L M K L N x K ..^ L x M ..^ N
67 66 ssrdv K L M N K < L M K L N K ..^ L M ..^ N
68 67 ex K L M N K < L M K L N K ..^ L M ..^ N
69 5 68 impbid K L M N K < L K ..^ L M ..^ N M K L N