Metamath Proof Explorer


Theorem ssfzo12bi

Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 5-Nov-2018)

Ref Expression
Assertion ssfzo12bi KLMNK<LK..^LM..^NMKLN

Proof

Step Hyp Ref Expression
1 df-3an KLK<LKLK<L
2 1 biimpri KLK<LKLK<L
3 2 3adant2 KLMNK<LKLK<L
4 ssfzo12 KLK<LK..^LM..^NMKLN
5 3 4 syl KLMNK<LK..^LM..^NMKLN
6 elfzo2 xK..^LxKLx<L
7 eluz2 xKKxKx
8 simprrl xKLMNM
9 8 adantr xKLMNMKKxM
10 simpll xKLMNMKKxx
11 zre MM
12 11 adantr MNM
13 12 adantl KLMNM
14 zre KK
15 14 adantr KLK
16 15 adantr KLMNK
17 zre xx
18 17 adantr xKLMNx
19 letr MKxMKKxMx
20 13 16 18 19 syl2an23an xKLMNMKKxMx
21 20 imp xKLMNMKKxMx
22 9 10 21 3jca xKLMNMKKxMxMx
23 22 exp31 xKLMNMKKxMxMx
24 23 com23 xMKKxKLMNMxMx
25 24 expdimp xMKKxKLMNMxMx
26 25 impancom xKxMKKLMNMxMx
27 26 com13 KLMNMKxKxMxMx
28 27 3adant3 KLMNK<LMKxKxMxMx
29 28 com12 MKKLMNK<LxKxMxMx
30 29 adantr MKLNKLMNK<LxKxMxMx
31 30 impcom KLMNK<LMKLNxKxMxMx
32 31 com12 xKxKLMNK<LMKLNMxMx
33 32 adantr xKxx<LKLMNK<LMKLNMxMx
34 33 imp xKxx<LKLMNK<LMKLNMxMx
35 eluz2 xMMxMx
36 34 35 sylibr xKxx<LKLMNK<LMKLNxM
37 simpl2r KLMNK<LMKLNN
38 37 adantl xKxx<LKLMNK<LMKLNN
39 17 adantl KLMNxx
40 zre LL
41 40 ad3antlr KLMNxL
42 zre NN
43 42 adantl MNN
44 43 adantl KLMNN
45 44 adantr KLMNxN
46 ltletr xLNx<LLNx<N
47 39 41 45 46 syl3anc KLMNxx<LLNx<N
48 47 ex KLMNxx<LLNx<N
49 48 com23 KLMNx<LLNxx<N
50 49 3adant3 KLMNK<Lx<LLNxx<N
51 50 expcomd KLMNK<LLNx<Lxx<N
52 51 adantld KLMNK<LMKLNx<Lxx<N
53 52 imp KLMNK<LMKLNx<Lxx<N
54 53 com13 xx<LKLMNK<LMKLNx<N
55 54 adantr xKxx<LKLMNK<LMKLNx<N
56 55 imp xKxx<LKLMNK<LMKLNx<N
57 56 imp xKxx<LKLMNK<LMKLNx<N
58 elfzo2 xM..^NxMNx<N
59 36 38 57 58 syl3anbrc xKxx<LKLMNK<LMKLNxM..^N
60 59 exp31 xKxx<LKLMNK<LMKLNxM..^N
61 60 3adant1 KxKxx<LKLMNK<LMKLNxM..^N
62 7 61 sylbi xKx<LKLMNK<LMKLNxM..^N
63 62 imp xKx<LKLMNK<LMKLNxM..^N
64 63 3adant2 xKLx<LKLMNK<LMKLNxM..^N
65 6 64 sylbi xK..^LKLMNK<LMKLNxM..^N
66 65 com12 KLMNK<LMKLNxK..^LxM..^N
67 66 ssrdv KLMNK<LMKLNK..^LM..^N
68 67 ex KLMNK<LMKLNK..^LM..^N
69 5 68 impbid KLMNK<LK..^LM..^NMKLN