Metamath Proof Explorer


Theorem ssnn0fi

Description: A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019)

Ref Expression
Assertion ssnn0fi S0SFins0x0s<xxS

Proof

Step Hyp Ref Expression
1 0nn0 00
2 1 a1i S=00
3 breq1 s=0s<x0<x
4 3 imbi1d s=0s<xxS0<xxS
5 4 ralbidv s=0x0s<xxSx00<xxS
6 5 adantl S=s=0x0s<xxSx00<xxS
7 nnel ¬xSxS
8 n0i xS¬S=
9 7 8 sylbi ¬xS¬S=
10 9 con4i S=xS
11 10 a1d S=0<xxS
12 11 ralrimivw S=x00<xxS
13 2 6 12 rspcedvd S=s0x0s<xxS
14 13 2a1d S=S0SFins0x0s<xxS
15 ltso <Or
16 id S0S0
17 nn0ssre 0
18 16 17 sstrdi S0S
19 18 3anim3i SFinSS0SFinSS
20 fisup2g <OrSFinSSsSyS¬s<yyy<szSy<z
21 15 19 20 sylancr SFinSS0sSyS¬s<yyy<szSy<z
22 simp3 SFinSS0S0
23 breq2 y=xs<ys<x
24 23 notbid y=x¬s<y¬s<x
25 24 rspcva xSyS¬s<y¬s<x
26 25 2a1d xSyS¬s<yx0SFinSS0sS¬s<x
27 26 expcom yS¬s<yxSx0SFinSS0sS¬s<x
28 27 com24 yS¬s<ySFinSS0sSx0xS¬s<x
29 28 imp31 yS¬s<ySFinSS0sSx0xS¬s<x
30 7 29 biimtrid yS¬s<ySFinSS0sSx0¬xS¬s<x
31 30 con4d yS¬s<ySFinSS0sSx0s<xxS
32 31 ralrimiva yS¬s<ySFinSS0sSx0s<xxS
33 32 ex yS¬s<ySFinSS0sSx0s<xxS
34 33 adantr yS¬s<yyy<szSy<zSFinSS0sSx0s<xxS
35 34 com12 SFinSS0sSyS¬s<yyy<szSy<zx0s<xxS
36 35 reximdva SFinSS0sSyS¬s<yyy<szSy<zsSx0s<xxS
37 ssrexv S0sSx0s<xxSs0x0s<xxS
38 22 36 37 sylsyld SFinSS0sSyS¬s<yyy<szSy<zs0x0s<xxS
39 21 38 mpd SFinSS0s0x0s<xxS
40 39 3exp SFinSS0s0x0s<xxS
41 40 com3l SS0SFins0x0s<xxS
42 14 41 pm2.61ine S0SFins0x0s<xxS
43 fzfi 0sFin
44 elfz2nn0 y0sy0s0ys
45 44 notbii ¬y0s¬y0s0ys
46 3ianor ¬y0s0ys¬y0¬s0¬ys
47 3orass ¬y0¬s0¬ys¬y0¬s0¬ys
48 45 46 47 3bitri ¬y0s¬y0¬s0¬ys
49 ssel S0ySy0
50 49 adantr S0s0ySy0
51 50 adantr S0s0x0s<xxSySy0
52 51 con3rr3 ¬y0S0s0x0s<xxS¬yS
53 notnotb y0¬¬y0
54 pm2.24 s0¬s0¬yS
55 54 adantl S0s0¬s0¬yS
56 55 adantr S0s0x0s<xxS¬s0¬yS
57 56 com12 ¬s0S0s0x0s<xxS¬yS
58 57 a1d ¬s0y0S0s0x0s<xxS¬yS
59 breq2 x=ys<xs<y
60 neleq1 x=yxSyS
61 59 60 imbi12d x=ys<xxSs<yyS
62 61 rspcva y0x0s<xxSs<yyS
63 nn0re s0s
64 nn0re y0y
65 ltnle sys<y¬ys
66 63 64 65 syl2an s0y0s<y¬ys
67 df-nel yS¬yS
68 67 a1i s0y0yS¬yS
69 66 68 imbi12d s0y0s<yyS¬ys¬yS
70 69 biimpd s0y0s<yyS¬ys¬yS
71 70 ex s0y0s<yyS¬ys¬yS
72 71 adantl S0s0y0s<yyS¬ys¬yS
73 72 com12 y0S0s0s<yyS¬ys¬yS
74 73 adantr y0x0s<xxSS0s0s<yyS¬ys¬yS
75 62 74 mpid y0x0s<xxSS0s0¬ys¬yS
76 75 ex y0x0s<xxSS0s0¬ys¬yS
77 76 com13 S0s0x0s<xxSy0¬ys¬yS
78 77 imp S0s0x0s<xxSy0¬ys¬yS
79 78 com13 ¬ysy0S0s0x0s<xxS¬yS
80 58 79 jaoi ¬s0¬ysy0S0s0x0s<xxS¬yS
81 53 80 biimtrrid ¬s0¬ys¬¬y0S0s0x0s<xxS¬yS
82 81 impcom ¬¬y0¬s0¬ysS0s0x0s<xxS¬yS
83 52 82 jaoi3 ¬y0¬s0¬ysS0s0x0s<xxS¬yS
84 48 83 sylbi ¬y0sS0s0x0s<xxS¬yS
85 84 com12 S0s0x0s<xxS¬y0s¬yS
86 85 con4d S0s0x0s<xxSySy0s
87 86 ssrdv S0s0x0s<xxSS0s
88 ssfi 0sFinS0sSFin
89 43 87 88 sylancr S0s0x0s<xxSSFin
90 89 rexlimdva2 S0s0x0s<xxSSFin
91 42 90 impbid S0SFins0x0s<xxS