Metamath Proof Explorer


Theorem stoweidlem21

Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem21.1 _tG
stoweidlem21.2 _tH
stoweidlem21.3 _tS
stoweidlem21.4 tφ
stoweidlem21.5 G=tTHt+S
stoweidlem21.6 φF:T
stoweidlem21.7 φS
stoweidlem21.8 φfAgAtTft+gtA
stoweidlem21.9 φxtTxA
stoweidlem21.10 φfAf:T
stoweidlem21.11 φHA
stoweidlem21.12 φtTHtFtS<E
Assertion stoweidlem21 φfAtTftFt<E

Proof

Step Hyp Ref Expression
1 stoweidlem21.1 _tG
2 stoweidlem21.2 _tH
3 stoweidlem21.3 _tS
4 stoweidlem21.4 tφ
5 stoweidlem21.5 G=tTHt+S
6 stoweidlem21.6 φF:T
7 stoweidlem21.7 φS
8 stoweidlem21.8 φfAgAtTft+gtA
9 stoweidlem21.9 φxtTxA
10 stoweidlem21.10 φfAf:T
11 stoweidlem21.11 φHA
12 stoweidlem21.12 φtTHtFtS<E
13 fvconst2g StTT×St=S
14 7 13 sylan φtTT×St=S
15 14 eqcomd φtTS=T×St
16 15 oveq2d φtTHt+S=Ht+T×St
17 4 16 mpteq2da φtTHt+S=tTHt+T×St
18 5 17 eqtrid φG=tTHt+T×St
19 fconstmpt T×S=sTS
20 nfcv _sS
21 eqidd s=tS=S
22 3 20 21 cbvmpt sTS=tTS
23 19 22 eqtri T×S=tTS
24 3 nfeq2 tx=S
25 simpl x=StTx=S
26 24 25 mpteq2da x=StTx=tTS
27 26 eleq1d x=StTxAtTSA
28 27 imbi2d x=SφtTxAφtTSA
29 9 expcom xφtTxA
30 28 29 vtoclga SφtTSA
31 7 30 mpcom φtTSA
32 23 31 eqeltrid φT×SA
33 nfcv _tT
34 3 nfsn _tS
35 33 34 nfxp _tT×S
36 8 2 35 stoweidlem8 φHAT×SAtTHt+T×StA
37 11 32 36 mpd3an23 φtTHt+T×StA
38 18 37 eqeltrd φGA
39 simpr φtTtT
40 feq1 f=Hf:TH:T
41 40 rspccva fAf:THAH:T
42 10 11 41 syl2anc φH:T
43 42 ffvelcdmda φtTHt
44 7 adantr φtTS
45 43 44 readdcld φtTHt+S
46 5 fvmpt2 tTHt+SGt=Ht+S
47 39 45 46 syl2anc φtTGt=Ht+S
48 47 oveq1d φtTGtFt=Ht+S-Ft
49 43 recnd φtTHt
50 6 ffvelcdmda φtTFt
51 50 recnd φtTFt
52 7 recnd φS
53 52 adantr φtTS
54 49 51 53 subsub3d φtTHtFtS=Ht+S-Ft
55 48 54 eqtr4d φtTGtFt=HtFtS
56 55 fveq2d φtTGtFt=HtFtS
57 12 r19.21bi φtTHtFtS<E
58 56 57 eqbrtrd φtTGtFt<E
59 58 ex φtTGtFt<E
60 4 59 ralrimi φtTGtFt<E
61 1 nfeq2 tf=G
62 fveq1 f=Gft=Gt
63 62 oveq1d f=GftFt=GtFt
64 63 fveq2d f=GftFt=GtFt
65 64 breq1d f=GftFt<EGtFt<E
66 61 65 ralbid f=GtTftFt<EtTGtFt<E
67 66 rspcev GAtTGtFt<EfAtTftFt<E
68 38 60 67 syl2anc φfAtTftFt<E