Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem21.1 | |
|
stoweidlem21.2 | |
||
stoweidlem21.3 | |
||
stoweidlem21.4 | |
||
stoweidlem21.5 | |
||
stoweidlem21.6 | |
||
stoweidlem21.7 | |
||
stoweidlem21.8 | |
||
stoweidlem21.9 | |
||
stoweidlem21.10 | |
||
stoweidlem21.11 | |
||
stoweidlem21.12 | |
||
Assertion | stoweidlem21 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem21.1 | |
|
2 | stoweidlem21.2 | |
|
3 | stoweidlem21.3 | |
|
4 | stoweidlem21.4 | |
|
5 | stoweidlem21.5 | |
|
6 | stoweidlem21.6 | |
|
7 | stoweidlem21.7 | |
|
8 | stoweidlem21.8 | |
|
9 | stoweidlem21.9 | |
|
10 | stoweidlem21.10 | |
|
11 | stoweidlem21.11 | |
|
12 | stoweidlem21.12 | |
|
13 | fvconst2g | |
|
14 | 7 13 | sylan | |
15 | 14 | eqcomd | |
16 | 15 | oveq2d | |
17 | 4 16 | mpteq2da | |
18 | 5 17 | eqtrid | |
19 | fconstmpt | |
|
20 | nfcv | |
|
21 | eqidd | |
|
22 | 3 20 21 | cbvmpt | |
23 | 19 22 | eqtri | |
24 | 3 | nfeq2 | |
25 | simpl | |
|
26 | 24 25 | mpteq2da | |
27 | 26 | eleq1d | |
28 | 27 | imbi2d | |
29 | 9 | expcom | |
30 | 28 29 | vtoclga | |
31 | 7 30 | mpcom | |
32 | 23 31 | eqeltrid | |
33 | nfcv | |
|
34 | 3 | nfsn | |
35 | 33 34 | nfxp | |
36 | 8 2 35 | stoweidlem8 | |
37 | 11 32 36 | mpd3an23 | |
38 | 18 37 | eqeltrd | |
39 | simpr | |
|
40 | feq1 | |
|
41 | 40 | rspccva | |
42 | 10 11 41 | syl2anc | |
43 | 42 | ffvelcdmda | |
44 | 7 | adantr | |
45 | 43 44 | readdcld | |
46 | 5 | fvmpt2 | |
47 | 39 45 46 | syl2anc | |
48 | 47 | oveq1d | |
49 | 43 | recnd | |
50 | 6 | ffvelcdmda | |
51 | 50 | recnd | |
52 | 7 | recnd | |
53 | 52 | adantr | |
54 | 49 51 53 | subsub3d | |
55 | 48 54 | eqtr4d | |
56 | 55 | fveq2d | |
57 | 12 | r19.21bi | |
58 | 56 57 | eqbrtrd | |
59 | 58 | ex | |
60 | 4 59 | ralrimi | |
61 | 1 | nfeq2 | |
62 | fveq1 | |
|
63 | 62 | oveq1d | |
64 | 63 | fveq2d | |
65 | 64 | breq1d | |
66 | 61 65 | ralbid | |
67 | 66 | rspcev | |
68 | 38 60 67 | syl2anc | |